SIEMENS

Related catalogs

Industrial Controls
SIRIUS

PDF (E86060-K1010-A101-B2-7600)

SIMATIC

Products for
Totally Integrated Automation

PDF (E86060-K4670-A101-B7-7600)

Low-Voltage Power Distribution and Electrical Installation Technology

SENTRON•SIVACON•ALPHA
Protection, Switching, Measuring and Monitoring Devices, Switchboards and Distribution Systems

PDF (E86060-K8280-A101-B2-7600)
SIMOTICS GP, SD, XP, DP D 81.1
Low-Voltage Motors

Low-Voltage Motors

Type series 1FP1, 1LE1, 1LE5, 1MB1, 1MB5, 1PC1
Frame sizes 63 to 450
Power range 0.09 to 1000 kW
PDF (E86060-K5581-A111-B4-7600)

SITOP

Power supply
SITOP

E86060-D4001-A510-D8

SITRAIN

Digital Industry Academy
www.siemens.com/sitrain

LV 10

KT 10.1

ST 70

Miscellaneous

Industry Mall

Information and Ordering Platform on the Internet:

www.siemens.com/industrymall

Siemens TIA Selection Tool

for the selection, configuration and ordering of TIA products and devices
www.siemens.com/tst

Contact

Your personal contact can be found in our Contacts Database at:
www.siemens.com/automation-contact

Trademarks

All product designations may be registered trademarks or product names of Siemens AG or other supplying companies Third parties using these trademarks or product names for their own purposes may infringe upon the rights of the trademark owners.

Further information about industrial controls:
www.siemens.com/sirius

Technical Support

Expert technical support for Industrial controls:

Support Request:
www.siemens.com/support-request

Industrial Controls

SIRIUS

Catalog IC $10 \cdot 2021$

Invalid:
Catalog IC $10 \cdot 2020$
Catalog Abridged IC 10 A - 02/2020
SIRIUS 3RS2 Temperature Monitoring Relays
Refer to the Industry Mall for current updates of this catalog:
www.siemens.com/industrymall
© Siemens 2021

1 Introduction

2 Industrial communication

3 Switching devices -
Contactors and contactor assemblies for switching motors

4 Switching devices -
Contactors and contactor assemblies Special applications

5 Switching devices -
Contactors and contactor assemblies -
Contactor relays and relays
6 Switching devices -
Soft starters and solid-state
switching devices

7 Protection equipment

8 Load feeders and motor starters for use in the control cabinet

9 Motor starters for use in the field, high degree of protection

10 Monitoring and control devices

11 Safety technology

12 Position and safety switches

13 Commanding and signaling devices

14 Parameterization, configuration and visualization with SIRIUS

15 Power supply

16 Appendix

Ordering notes

Catalog IC 10 contains all selection and order-relevant data.

Ordering notes

Ordering special versions
For ordering products that differ from the versions listed in the catalog, the article number specified in the catalog must be supplemented with " $-Z$ "; the required features must be specified by means of the alphanumeric order codes or in plain text.
Small orders
When small orders are placed, the costs associated with order processing are greater than the order value. We recommend therefore that you combine several small orders. Where this is not possible, we unfortunately have to charge a processing supplement of $20.00 €$ to cover our costs for order processing and invoicing for all orders with a net goods value of less than $250.00 €$.

Price units (PU)

The price unit defines the number of units, sets or meters to which the specified price applies.
Price groups (PG)
Each product is assigned to a price group.

Dimensions

All dimensions in mm.

Standard delivery time (SD)

SD in days (d); Preferred type; X On request Preferred types are available immediately from stock, i.e. are dispatched within 24 hours. Normal quantities of the products are usually delivered within the specified time following receipt of your order at our branch.
In exceptional cases, the actual delivery time may differ from that specified. The delivery times apply up to the ramp at Siemens AG (products ready for dispatch).
The transport times depend on the destination and type of shipping. The standard transport time for Germany is one day. The standard delivery times specified here are only examples. They are continuously optimized. For more up-to-the-minute information, please visit www.siemens.com/sirius/mall.

Packaging sizes (PS)

The packaging size defines the number, e.g. of units, sets or meters, contained in an outer packaging. Only the quantity defined by the packaging size or a multiple thereof can be ordered. For multi-unit and reusable packaging, see page 16/4.

Example

3RA2110-0FA15-1AP0
SD: 2 working days
PG: 41D
Order quantity 1 unit or a multiple thereof
3RA1921-1D
SD: Preferred type
PG: 41B
Order quantity 10 units or a multiple thereof
3SU1900-0AB71-0AB0
SD: 5 working days
PG: 41J
Order quantity 10 units or a multiple thereof

SD	Article No.	Price per PU	PU (UNIT, SET, M)	PS*	PG
d			1	1 unit	41D
2	3RA2110-0FA15-1AP0		1	10 units	41B
3	3RA1921-1D		100	10 units	41J

SIRIUS in the World Wide Web

The most important online services at a glance.

SIRIUS 3RW soft starters

As diverse as your tasks

The strong, harmonized portfolio of soft starters is suited to a wide range of standard - and also fail-safe and ATEX applications thanks to comprehensive and specific functions. Benefit from intelligent functions such as condition monitoring, automatic parameterization, pump cleaning and integrated braking functions, regardless of the industry you are in.

Strong portfolio

Comprehensive, coordinated soft starter portfolio for simple to demanding starting: Basic, General, High Performance

Efficient switching

Energy-efficient switching and mechanical protection of the drive train thanks to soft starter with hybrid switching technology

Intelligent use

Concentrated, application-specific functionality thanks to intelligent features such as automatic parameterization, pump cleaning and condition monitoring

Ready for the digital future

Support for digital engineering processes with tools and data.
Data provision for local visualization or cloud-based analysis

SIRIUS 3RW

Strong, comprehensive portfolio with a wide range of possibilities thanks to a flexible design.

More information, see www.siemens.com/ softstarters

Digitalization

The 3RW soft starters
help you to realize
the full potential
of digitalization.
This is particularly
beneficial when it comes
to economic efficiency.

Your application in focus

 Pump cleaning and pump

 stopping modeThe pump cleaning function prevents pumps from blocking and therefore increases your productivity and system availability. The pump stopping mode avoids mechanical loading in the piping system and extends the service life of the equipment.

The condition monitoring function supports optimal planning of maintenance work on bearings or seals, thereby maximizing availability.

Automatic

parameterization

Automatic parameterization simplifies the commissioning and operation of critical applications considerably, even in the case of highly dynamic load characteristics.

Integrated braking functions

Intelligent functions such as soft starter braking ensure a fast and reliable stop without engineering and configuration work.

SIRIUS modular system

 Efficiently combined.

More information,
see:
www.siemens.com/ sirius-modularsystem

Modular
design

Optimally matched and dimensioned products expandable with uniform accessories

Save
space

Highest performance on the market based on installation size

Order
pre-assembled

Ready-made and tested combinations with short-circuit strength up to 150 kA/400 V

Quick

wiring

Comprehensive portfolio for springtype terminals, function blocks for contactor assemblies for reversing and star-delta (wyedelta) starting as well as connectors

Efficient configuration

Configuration data and macros for integration into your CAE systems

Worldwide

use

Fulfills all relevant standards and approvals worldwide, also for extreme conditions (e.g. safety, rail and shipping) and is IE3/IE4 ready

TIA Selection Tool

The right product in just a few clicks.

Prime reasons for the TIA Selection Tool

Quick, easy and secure

Components can be selected, configured and ordered quickly, easily and securely from the Siemens automation portfolio.

Intelligent

Intelligent selection wizards check the compatibility of the configured components and enable error-free ordering.

Clear

Required modules, devices and networks are automatically generated and clearly compared to one another.

Time-saving

Time savings of 80% in design thanks to ease of use and intelligent support.

The TIA Selection Tool is a completely paperless solution.
Download it now:
www.siemens.com/tst

Smart Control Panel Design

The new standard in electrical engineering

With Control Panel Design, Siemens offers for the first time a function in the TIA Selection Tool that can be used to design and dimension the main electrical system of a machine in accordance with standards. And this for the IEC standardization area and for the important North American market.

At the push of a button you receive the appropriate switching and protection devices for your motor, including standard-compliant cable cross-sections and short-circuit values for fuseless and fused load feeders.

Never before has the dimensioning of your load feeders been so quick and reliable!

Electrical engineering in ONE tool. This makes configuring more enjoyable!

1

Digital expertise on standards Standard conformity with no worries

3.

Consistent workflow
Electrical engineering with unlimited creativity

2.
Easy dimensioning A new dimension of dimensioning

4
Supported portfolio Intelligent divices for versatile solutions

Highlights

- Automatic short-circuit calculation and cable dimensioning for fuseless and fused load feeders according to IEC up to 250 kW as well as fuseless load feeders according to UL up to 250 hp
- Generation of complete EPLAN projects
- Selection of the appropriate switching and protection devices for the motor
- Visual planning of the main circuit in the single-line diagram
- Simple accessory selection
- Complete PDF documentation of technical specifications and calculation results (e.g. for the short-circuit verification)

Are you looking for a clear and easy way to dimension your circuits?

Or do you need suitable accessories for your switching devices?

The main circuit view with single-line display and the automatic display of accessories are two of the many new functions in the TIA Selection Tool.

Integrated Control Panels
 The easy way to build the optimum control panel.

We offer practical support in mastering the typical challenges of control panel engineering through a harmonized product portfolio, tools and data for digitalization in engineering, and expert know-how.

Working together for simple and stress-free control panel design
Comprehensive support for all control panel applications

Want to save time and costs? With Integrated Control Panels, it's easy to optimize all aspects of control panel building for your industrial machines and plants. From preparation and dimensioning, design and construction, through to service and support - for greater competitiveness and long-term success.

Expert know-how
The faster route to the ideal control panel with practice-oriented expertise

We support you with exactly the right know-how to give you a competitive edge - both now and in the future. This includes applying standards and guidelines in day-to-day operations (e.g. UL 508A, IEC 60204-1) as well as efficient engineering and configuration.

- Webinars, online trainings and individual consulting on product and application topics
- Literature with practical tips and tricks, including: guidelines, product manuals, white papers
www.siemens.com/controlpanel/infocenter

Tools \& data for digitalization in engineering Maximum efficiency for control panel design

With a range of tools and data-based services, we support you with the digitalization of your business and enable the leverage of all the advantages this offers for control panel design: greater efficiency, flexibility and quality - in every process phase!

- Intelligent selection, dimensioning and design
www.siemens.com/controlpanel/cpd
www.siemens.com/controlpanel/tools
- Control panel engineering
www.siemens.com/controlpanel/engineering

Harmonized product and system portfolio
Effective savings in control cabinet design

Harmonized product and system portfolio saves construction time. With our coordinated, integrated portfolio of products that includes automation technology, drive train components, industrial controls and matching control panel enclosures, we can reduce your engineering overhead and ensure the harmonious interaction of all devices. These are extensively tested, and are all certified and available for use worldwide - enabling you to remain flexible within the global business environment.
Benefit also from our expert tips concerning control panels. www.siemens.com/controlpanel/tips

Product highlights

SIRIUS 3RW55, 3RW55 Failsafe, 3RW52 and 3RW50 soft starters
Can be flexibly deployed in many applications
Type: 3RW55..-.HA.., 3RW55..-.HF.4, 3RW52 and 3RW50
Pages 6/14, 6/38, 6/54 and 6/72 onwards

SIRIUS 3RT203 and 3RT204 contactors with fail-safe control input for safety-related applications to SIL CL 3, 3-pole, up to 55 kW
Type: 3RT203, 3RT204
Page 3/70

SIRIUS 3RV2 motor starter protectors/circuit breakers For special operating conditions up to $-50^{\circ} \mathrm{C}$
Type: 3RV2..1-...--OBAO
Page 7/28 onwards

SIRIUS 3RF20 to 3RF22 solid-state relays

Type: 3RF20, 3RF21, 3RF22
Page 6/119 onwards

SIRIUS 3RV2 motor starter protectors/circuit breakers For system protection

Type: 3RV20.1-..A10-0DA0
Page 7/44

SIRIUS 3RF23 and 3RF24 solid-state contactors more compact dimensions thanks to improved cooling and simplified grounding
Type: 3RF23, 3RF24
Page 6/133 onwards

SIRIUS 3RV2 motor starter protectors/circuit breakers 3RV29.6 door-coupling rotary operating mechanisms
Type: 3RV2926, 3RV2936, 3RV2946 Page $7 / 55$ onwards

More information, see
www.siemens.com/
sirius

Soft Starter ES (TIA Portal) V16

Type: 3ZS1320-...
Page 14/5 onwards

SIRIUS Asset Monitor
For SIMOCODE 3UF7
App available in Mindsphere Store
Page 14/24

Page 14/12 onwards

SIRIUS 3RS2 temperature monitoring relays

Type: 3RS25, 3RS26, 3RS28, 3RS29
Page 10/126 onwards

SIRIUS Sim
For 3SK2 and 3RW55
Free download
Page 14/23

Safety cabling in the field with IP67
System comprising SIRIUS sensors and SIMATIC ET 200eco provides a safe M12 connection method for industry and enables PROFINET/PROFIsafe connection
Type: 3SE, 3SU
Pages $12 / 86$ and 13/126 onwards

Technical Support

One click - and you have all the information you need.

Industry Online Support get fast and up-to-date information online www.siemens.com/online-support
In Industry Online Support you will find FAQs, manuals, certificates, applications \& tools, and much more

Support Request -

 the fast track to the expertswww.siemens.com/support-request
Using the Support Request form in Online Support you can send your query directly to Technical Support.

Conversion tool -
the easy and efficient way to find successor products
www.siemens.com/conversion-tool

Any more questions?

Our experts are there to help you with competent technical advice.

Support Request:
www.siemens.com/support-request

Competent and fast technical advice regarding:

- Product selection
- Conversion from old to new
- Competitor conversion
- Special versions
- Particular requirements
- Commissioning
- Maintenance

Energy-efficient controls

SIRIUS brings down energy costs

1/3
 Energy management with SIRIUS
 Integration into energy management software

Systematic industrial safety
technology
SIRIUS Safety Integrated \(\left|\begin{array}{ll}IE3/IE4 ready

SIRIUS controls for reliable switching

and protection of IE3/IE4 motors\end{array}\right|\)| Innovative technology for |
| :--- |
| saving energy |
| Electronic starting with hybrid switching |
| technology |

Introduction

Energy-efficient controls

SIRIUS brings down energy costs

Overview

Energy management in industry

Whether you are a plant operator, planner or machine manufacturer: Energyefficient production is a challenge and an opportunity in equal measure.

Overview of the energy management process

Energy-efficient production as a success factor

In order to harness energy potential, with our vast portfolio, we always maintain a clear view of the overall product development and production process. Because maximum energy efficiency in production can only be achieved through perfect interaction of all components.
That is why it is important to first create an awareness for existing energy-saving potential, recognize (identify) and assess (evaluate) opportunities for optimization through precise analysis. Finally, appropriate measures must be implemented (realized).
With our full-range portfolio of energy-efficient drive solutions, automation and services, you too will reach maximum energy efficiency, higher productivity and lasting competitiveness in your company.

Three columns of energy efficiency with products from the SIRIUS modular system

Energy-efficient products - SIRIUS reduces power loss

SIRIUS controls (3RM motor starter, 3RR2 monitoring relay, 3RB3 overload relay, 3RT2 contactors, 3RW soft starter and 3RV2 motor starter protector/circuit breaker) as well as the ET 200SP motor starters are characterized by extremely low intrinsic power loss. This not only lowers energy costs, but also reduces the amount of waste heat in the control cabinet. This then translates to a higher packing density and a reduction in the required cooling performance.

Energy-measuring products

Energy management can be instrumental in increasing plant productivity to bring about a significant improvement to the competitive ability of a company - in all industries.

Energy data acquisition represents an important component of the overall energy data management process here. Through transparency right down to the loads, it is possible to identify and utilize potential energy savings.
With communication-capable SIRIUS switching devices you can acquire energy data from the drive train without any additional effort.
SIRIUS controls help you make energy flows visible.

Best drive solutions in terms of energy

In order to design processes for optimal energy efficiency, it is not enough to simply measure the energy flow and deploy energy-efficient products. The greatest lever for saving energy can be derived from closely examining the application.

SinaSave energy efficiency tool

Amortization calculator for energy-efficient drive systems
The SinaSave energy efficiency tool determines energy saving potential and amortization times based on your individual conditions of use and therefore offers practical assistance in making decisions about investments in energy-efficient technologies.
From SinaSave version 6 and higher, the drive systems to be compared and the relevant drive component parameters are displayed graphically. An additional expansion are the numerous comparison possibilities for different control types and comprehensive product combinations for drive solutions for pump and fan applications.
The product portfolio comprises not just SIRIUS controls, but also SIMOTICS motors and SINAMICS inverters and converters, thus offering a comprehensive range of comparison possibilities - according to your individual requirements.
SinaSave, the free amortization calculator for energy-efficient drives, see www.siemens.com/sinasave.

Overview

SIMATIC Energy Suite

High energy consumption and automated production processes are typical for many industries.
If you want to keep your energy costs under control in the long term and you are already focusing on the digital future, it's a good idea to equip your plant with integrated energy measuring technology, thus anchoring energy management into the automation of your production processes - which is where most energy is consumed.
SIMATIC Energy Suite as an integrated option for the TIA Portal efficiently links energy management with automation, thus creating energy transparency in the production system. Considerably simplified configuration of energy-measuring components from the SIMATIC, SENTRON, SINAMICS, SIRIUS and SIMOCODE product families ${ }^{2}$) significantly reduces the configuration workload. Thanks to the end-to-end connection to SIMATIC Energy Manager PRO ${ }^{1)}$ or cloud-based Service Energy Analytics, you can seamlessly expand the recorded energy data to create a cross-site energy management system.
This also enables companies to fulfill all economic and energy management requirements - from purchasing of energy through planning to energy management.

The advantages at a glance:

- Automatic generation of energy management data
- Integration into TIA Portal and automation
- Simple configuration

1) SIMATIC Energy Manager PRO is the innovative successor to SIMATIC B.Data
2) Products from the SIMATIC, SENTRON, SINAMICS, SIRIUS and SIMOCODE product families. For details on the currently supported devices, see www.siemens.com/energysuite-hardware.

Highlights

- Simple and intuitive configuration instead of programming
- Automatic generation of the PLC energy program
- Convenient integration of measuring components from the Siemens portfolio and from the portfolios of other manufacturers
- Integrated in the TIA Portal and automation
- Archiving on WinCC Professional or PLC
- Seamless connection to Energy Manager PRO and Energy Analytics

SENTRON powermanager

The SENTRON powermanager energy monitoring software displays important characteristic quantities for individual devices and the entire system on a clearly organized dashboard and thus analyzes the energy consumption.
The advantages at a glance:

- Analyzing energy flows: Cost-saving measures can be derived directly and faults can be localized rapidly - for greater awareness regarding energy consumption and lower costs.
- Easy to get started: Can be added to existing hardware and available infrastructure.
- Fast savings: Analyzes power curve and detects load peaks.
- High plant availability: Continuous monitoring of energy distribution ensures that critical system states are detected at an early stage.
The SIRIUS 3RW55 soft starter is integrated into SENTRON powermanager by simple installation of an XML file: https://support.industry.siemens.com/cs/ww/en/view/109779688
For more information on SENTRON powermanager, see www.siemens.com/powermanager.

For more information on SIMATIC Energy Suite, see www.siemens.com/energysuite.

Introduction
Systematic industrial safety technology

SIRIUS Safety Integrated

Overview

SIRIUS Safety Integrated

Manufacturers and operators of machines must fulfill numerous requirements: reducing costs, improving productivity, and ensuring the safety of machines. The industrial safety technology from Siemens offers innovative, economical solutions for the functional safety of machinery.

Machine safety - compliance with directives

Before any machines or plants can be supplied or operated, they must meet the fundamental safety requirements of the EU Directives. Similar requirements apply in many other countries and markets.
To guarantee conformity with these requirements, it is recommended that the correspondingly harmonized standards IEC 62061 or EN ISO 13849-1 are applied. This gives manufacturers and operators legal certainty regarding compliance with both national regulations and directives, which are confirmed by the manufacturer of a machine.
The aim of safety technology is therefore to allow people, machines and the environment to be protected and statutory safety requirements to be satisfied.

The quick and easy way to safe machinery

In addition to the statutory regulations governing the protection of people there are also economic reasons for avoiding personal injury and the resulting down times, and for protecting both machinery and equipment from damage.

Safety Integrated benefits machine manufacturers and plant operators in many ways:

- Lower costs for hardware, assembly and engineering
- Higher availability thanks to faster diagnostics and fewer down times
At the same time, using modular safety concepts allows them to modernize their plants more easily and at lower cost.

Smart controls ensure the functional safety of machinery

Our SIRIUS Safety Integrated ${ }^{1)}$ controls are a central element of the Siemens Safety Integrated concept, based on Totally Integrated Automation.
Whether for reliable detecting, evaluating and reacting, our SIRIUS Safety Integrated controls (page 1/6 onwards) provide cost-effective solutions for the safety of your machine or plant. Take the SIRIUS 3SK safety relays for example: They are modularly expandable, and can integrate compact motor starters such as the fail-safe SIRIUS 3RM1 very simply via the device connector (parameterization is performed easily with a screwdriver on the DIP switches or by drag and drop in the engineering software). Or the SIRIUS 3RK3 Modular Safety System: This provides a high degree of functionality as an autonomous safety control downstream of a standard control, and makes smart safety solutions possible via AS-Interface.

The SIMOCODE pro modular motor management system combines all required protection, monitoring, safety and control functions for motor feeders. It can be connected to fail-safe controllers via PROFIBUS or PROFINET and shut down motors in emergency situations.
SIRIUS Safety Integrated uses fail-safe communication via standard fieldbus systems, such as ASIsafe via AS-Interface and PROFIsafe via PROFIBUS and PROFINET, to solve even networked safety tasks of greater complexity. This opens the door to flexible safety solutions for compact machines or large-scale plants - naturally compliant with current standards up to SIL 3/PL e.
The first integrated ASIsafe connection to the distributed I/O system ensures even more consistency. With the SIMATIC AS-i F-Links, AS-i networks can be connected quite simply to safety controls via PROFIsafe via the SIMATIC ET 200SP.

Particular highlights are the contactors of sizes S2 to S12 with fail-safe control input, the SIRIUS ACT 3SU1 EMERGENCY STOP with PROFINET or PROFIsafe interface, and the fail-safe motor starters for ET 200SP (page 8/95 onwards) and the 3RW55 fail-safe soft starters (page 6/38 onwards). With these products, seamless integration into fail-safe control systems is possible.

Your partner for machine and plant safety

With Safety Integrated, Siemens has provided the smart answer to constantly increasing requirements for the functional safety of a machine and for its cost-effectiveness and flexibility. Our comprehensive portfolio of safe controls, control technology and drive technology provides scalable solutions for precisely tailored safety concepts for protecting people, machines and the environment. Our products meet the current safety standards in the industry, including IEC, ISO, NFPA and UL.
As a partner for machine and plant safety, Siemens also supports users with examples of functions and up-to-date knowhow concerning international standards and directives.
The Safety Selector (www.siemens.com/safety-selector) thus guides the user to the appropriate application example based on selection criteria to be assigned.
The free TÜV-approved Safety Evaluation Tool for evaluating safety functions in accordance with IEC 62061 and EN ISO 13849-1 is integrated in the TIA Selection Tool.
Thus, the selection of components and their safety-related assessment are implemented in a coherent workflow.
Requirements-based training on CE marking, functional safety, risk assessment, and on our Safety Integrated products rounds off our portfolio.

1) For more information, see www.siemens.com/safety-integrated. Application Manual for SIRIUS Safety Integrated, see https://support.industry.siemens.com/cs/ww/en/view/81366718.

Introduction

Systematic industrial safety technology

SIRIUS Safety Integrated

Devices with safety functions					
Detecting Product	Page	Evaluating Product	Page	Reacting Product	Page
3SE position and safety switches Flexible thanks to modular design, suitable for offshore applications	$12 / 2$	SIMOCODE pro 3UF7 Fail-safe expansion modules DM-F Local and DM-F PROFIsafe, safe shutdown of motors up to SIL 3/PL e	10/5	3RW55 Failsafe soft starters 3RW55 Failsafe High Performance soft starters with STO	
3SE6 non-contact safety switches RFID and magnetically-operated switches, non-contact, vibration-resistant, wear-free, IP69 (IP69K)/IP67	12/4	3SK safety relays Key modules of a consistent and costeffective safety chain. Flexible thanks to input and output expansion units	11/13	SIRIUS 3RM1 motor starters Compact, narrow and fail-safe hybrid motor starters in IP20 Easy configuration and low outlay for storage thanks to wide-setting range of the overload release	
3SU11 EMERGENCY STOP mushroom pushbuttons, 3SU18 two-hand operation console - SIRIUS ACT two-hand operation console with user-friendly capacitive sensor keys - High level of flexibility due to direct integration of the SIRIUS ACT EMERGENCY STOP via standardized, fail-safe communication protocols (PROFIsafe, ASIsafe)	$\begin{aligned} & 13 / 24, \\ & 13 / 71 \\ & 13 / 128 \end{aligned}$	3TK2810 safety relays Further modules of a consistent and costeffective safety chain for fail-safe detection of standstill or speed	11/33	ET 200SP fail-safe motor starters Compact, fail-safe hybrid motor starters for the ET 200SP system	95
3SE7 cable-operated switches, 3SE29, 3SE39 foot switches - Foot switches with metal or plastic enclosure in degree of protection IP65 - Cable-operated switches with latching and positive-opening NC contacts, in degree of protection IP65 or IP67	$\begin{aligned} & \hline 13 / 178 \\ & 13 / 182 \end{aligned}$	3RK3 Modular Safety System (MSS) Freely parameterizable safety relay, high flexibility with up to nine additional expansion modules and fail-safe connection to AS-Interface	11/36	ET 200pro Safety motor starters Solution PROFIsafe Communication-capable motor starters in high degree of protection IP65 Special safety modules enable the highest safety levels	

Devices with safety functions for AS-Interface

Introduction
IE3/IE4 ready
SIRIUS controls for reliable switching and protection of IE3/IE4 motors

Overview

IE3/IE4-compliant motors	This is why we have optimized our SIRIUS controls for IE3/IE4 motors		IE3/IE4 ready
			SIRIUS controls
	For example		Reliable switching and protection of motors at all times
but are characterized by higher currents during starting	No false tripping during startup process	Reliable switching capacity when using IE3/IE4 motors	Are you IE3/IE4 ready?

We are IE3/IE4 ready

IE3/IE4 motors have been mandatory for the power range from 0.75 to 375 kW for line operation in Europe since January 1, 2015.
From an electrical viewpoint, IE3/IE4 motors behave differently than less energy-efficient models - they are characterized by higher startup currents and modified dynamic behavior. This entails certain challenges for our controls.
The latest generation of SIRIUS controls has been fully optimized for IE3/IE4.

They avoid false tripping due to higher inrush currents of IE3/IE4 motors, offer optimized setting ranges for rated currents, and ensure reliable switching and protection in any situation the best requirements for use of modern IE3/IE4 motors.

Highlights

- Comprehensive range of IE3/IE4 motors for every application
- Siemens offers expertise through extensive analysis of IE3/IE4 motors
- Optimized SIRIUS controls for use with IE3/IE4 motors

More information

Application Manual for controls with IE3/IE4 motors, see https://support.industry.siemens.com/cs/ww/en/view/94770820

All IE3/IE4 ready products are marked in the catalog with the symbol \|IF3/IE4 ready

Overview

SIRIUS 3RV29 infeed system with 3RA2 load feeder and 3RM1 motor starter

The hybrid switching technology uses low-wear semiconductor technology for switching the motor on and off, and in the operating phase it relies on energy-saving relay technology.
This ensures durability, especially with high frequency of operation, and thus significantly reduces maintenance costs and extends the life of the motor starters.
In addition, due to the hybrid switching technology, motor starters have lower electromagnetic interference emissions, enabling you to increase your plant availability.

Further energy savings are provided by the integrated electronic overload protection.

This causes a lower intrinsic power loss than comparable motor feeders with thermal overload protection.
In this way, you benefit from reduced heat generation and therefore lower cooling power. And that saves energy.

Introduction

Innovative technology for saving energy
Electronic starting with hybrid switching technology

Once it is installed and wired, you simply connect the ET 200SP motor starter to the controller in the TIA Portal ready for parameterization.

Highlights

Use of hybrid switching technology for:

- SIRIUS 3RM1 motor starters
- ET 200SP motor starters
- SIRIUS soft starters

Fail-safe functionality for SIRIUS 3RW55 soft starters, SIRIUS 3RM1 motor starters and ET 200SP:

- Maximum safety:

Safety function up to SIL 3/PL e Cat. 4
Additional benefits for SIRIUS 3RM1 motor starters:

- Using device connectors safety-related group shutdown with reduced wiring is possible
- Direct connection to the 3SK safety relay, without additional wiring

Price groups

PG 212, 219, 230, 250, 254, 255, 256, 257, 41B, 41H, 41L, 42C, 42D, 5K1, 5K2

	Slaves
	I/O modules for use in the field, high degree of protection
2/42	
2/43	- Digital I/O modules, IP67-K60
2/45	- Digital I/O modules, IP68/IP69 - K60R
2/48	- Digital I/O modules, IP67-K45
2/50	- Digital I/O modules, IP67-K20
2/52	- Analog I/O modules, IP67- K60
	I/O modules for use in the control cabinet
2/55	- Introduction
2/56	- SlimLine Compact
2/60	- F90 module
2/61	- Flat module
	Modules with special functions
2/62	- Counter modules
2/63	- Ground-fault detection modules
2/64	- Overvoltage protection modules
3/17	Contactors and contactor assemblies - SIRIUS 3RT contactors, 3-pole up to 250 kW
3/147	- SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW
3/162	- SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW
3/108	- SIRIUS 3RA27 function modules
	Motor starters for use in the control cabinet
8/56	- SIRIUS 3RA6 compact starters: 3RA61 direct-on-line starters, 3RA62 reversing starters
9/23	Motor starters for use in the field, high degree of protection - SIRIUS M200D motor starters for AS-Interface
D31.21)	SINAMICS G110M, SINAMICS G110D distributed converters
	SIRIUS ACT pushbuttons and indicator lights
13/110	- Modules: AS-Interface modules
13/122	- Pushbuttons and indicator lights in the enclosure for AS-Interface
13/184	SIRIUS 8WD4 signaling columns

	Power supply units and data decoupling modules
2/65	AS-Interface power supply units
2/67	30 V power supply units
15/11)	24 V power supply units
2/69	S22.5 data decoupling modules
	Data decoupling modules for S7-1200
2/71	- DCM 1271 data decoupling module Transmission media
2/74	AS-Interface shaped cable System components and accessories
2/75	Repeaters
2/76	Extension plugs
2/77	Addressing units
2/79	Analyzer
2/83	Miscellaneous accessories
2/12	Diagnostics
	Software
14/18	AS-Interface block library for SIMATIC PCS 7
	IO-Link
	Introduction
2/85	Communication overview
2/86	System components
2/92	IO-Link specification
	Masters
	IO-Link master module for S7-1500
2/93	- CM 8xIO-Link
	IO-Link master module for S7-1200
2/94	- SM 1278 4xIO-Link master
	IO-Link master module for ET 200SP
2/95	- CM 4xIO-Link
	IO-Link master module for ET 200pro
2/96	- IO-Link master modules
	IO-Link master module for ET 200eco PN N/HW
2/97	- IO-Link master
2/98	IO-Link master module for ET 200AL - CM IO-Link

	Input modules
2/99	General data
2/100	K20 IO-Link modules
	Contactors and contactor assemblies
3/17	- SIRIUS 3RT contactors, 3-pole up to 250 kW
3/147	- SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW
3/162	- SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW
3/108	- SIRIUS 3RA27 function modules
	Overload relays
7/136	SIRIUS 3RB24 electronic overload relays for IO-Link for high-feature applications
	Motor starters for use
	SIRIUS 3RA6 compact starters for IO-Link
8/68	- 3RA64 direct-on-line starters
8/69	- 3RA65 reversing starters Monitoring relays
10/59	SIRIUS 3RR24 monitoring relays for mounting onto 3RT2 contactors for IO-Link
10/103	SIRIUS 3UG48 monitoring relays for stand-alone installation for IO-Link
10/126	SIRIUS 3RS28 temperature monitoring relay for IO-Link NEWV
	SIRIUS ACT pushbuttons and indicator lights
13/10	3SU1 ID key-operated switches
13/111	3SU1 electronic modules for IO-Link SIRIUS 8WD4 signaling columns
13/184	8WD44 IO-Link adapter element
ID 102)	RFID systems
2/91	IO-Link Device Description (IODD)
2/91	IO-Link Software
1)	See also Catalog KT 10.1.
2)	See Catalog ID 10.

Overview

More information

Homepage, see www.siemens.com/as-interface
Industry Mall, see www.siemens.com/product?as-interface

AS-Interface

AS-Interface - the smart communication standard for universal connection of the field level to the control system

The AS-Interface (AS-i) - the Actuator-Sensor-Interface, to be more precise - is a smart bus system for the field level that connects all the sensors and actuators in the field to the higherlevel control system more simply, flexibly and efficiently than any other.

The structure of a complex automation system is not always clear at first glance. The field level in particular, with its large numbers of devices with real-time requirements, needs a clear structure.
That is exactly what the AS-i fieldbus delivers: Via a simple twisted pair - the yellow AS-i cable - in an AS-i network up to 62 bus nodes can be connected to the AS-i master and simultaneously supplied with power. The standard here is robust data transmission in a rugged environment with a high degree of protection for the AS-Interface.

TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=AsInterface
System Manual for AS-Interface, see
https://support.industry.siemens.com/cs/ww/en/view/26250840

AS-i = simple!	AS-i $=$ flexible!	AS-i = efficient!
- Only one cable for data and energy - Time-saving assembly/installation - Engineering in the TIA Portal - User-friendly maintenance	- Flexible topologies - Open standard - Expandability - Safety engineering	- User-friendly addressing - Fast device replacement - Ruggedness and stability - Device and network diagnostics

AS-i from Siemens has everything in its favor

- Complete AS-i product range for bus-based standard and safety technology from a single source
- System-wide integration of the AS-i devices into SIMATIC, SINUMERIK and the TIA Portal engineering framework
- Integration of ASIsafe applications into SIMATIC F controller safety programming
- Central configuration of standard and safety technology in the TIA Portal and in STEP7 Classic - just one engineering framework for controller, AS-i master and safety
- Quick diagnostics of master and slave components via web browser, HMI or TIA Portal
- Planning, calculation and verification of the whole safety chain based on AS-i Safety in the Safety Evaluation Tool (TUV-approved)
- Integration of lower-level AS-i networks into the PCS 7 process control system
- Global spare parts logistics, consulting and service

ASIsafe enables integration of safety-related components in an AS-Interface network, for example:

- EMERGENCY STOP pushbuttons
- Protective door switches
- Cable-operated switches
- Other AS-i safety sensors

Your advantage: The simple wiring of AS-Interface is maintained.

AS-i Master and AS-i Safety module for ET 200SP 6ES7

Page

The CM AS-i Master ST and F-CM AS-i Safety ST modules are plugged into an ET 200SP configuration and connect an AS-i network, including safety-related inputs and outputs, with the controller.

- Single, double and multiple masters possible
- Per CM AS-i Master ST module up to 496 DI / 496 DQ / 124 AI / 124 AQ possible
- Per F-CM AS-i Safety ST module up to 31 safe input signals (two-channel) / 16 safe output channels possible
- Configuring with TIA Portal or STEP 7 Classic
- Plant-wide safety programming of the F-CPU via SIMATIC Distributed Safety/ Safety Advanced/F systems
- Integrated diagnostics
- No other programming tools required

Your advantage: Modular connection of fail-safe AS-i networks with system-wide programming in SIMATIC and SINUMERIK controllers.

AS-Interface

		Article No.	Page
Slaves (continued)			
SIRIUS contactor 3RT203.-1 NB30-0CC0	Contactors and contactor assemblies SIRIUS 3RT contactors, 3-pole up to 250 kW SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW - Notable reduction of wiring in the control circuit - Integrated mechanical interlocking - Prevention of wiring errors in the main circuit	3RT20 3RA23 3RA24	From 3/17 From 3/147 From 3/162
SIRIUS 3RA2712 function module for AS-Interface	SIRIUS 3RA27 function modules for AS-Interface - Connection of 3RT20 power contactors with communication capability, 3RA23 reversing contactor assemblies, and 3RA24 contactor assemblies for star-delta (wye-delta) starting to AS-Interface - Reduction of control current wiring through plug-in design and integrated monitoring of circuit breaker/motor starter protector and contactor - Reduced space requirement in the control cabinet through fewer digital inputs and outputs in the control system - Easy configuration through operation of feeders instead of individual contactors - Enhanced operational reliability and quick wiring thanks to spring-loaded terminals - Small number of variants through use of identical modules for size S00 to S3 contactors Your advantage: Shortening of mounting and startup times.	3RA2712	From 3/108
3RA61 compact starter	Motor starters for use in the control cabinet SIRIUS 3RA6 compact starters 3RA61 direct-on-line starters, 3RA62 reversing starters - Degree of protection IP20 - Very compact load feeders with the integrated functionality of an electronic overload relay - As direct-on line or reversing starters for motors up to $15 \mathrm{~kW} / 400 \mathrm{~V}$ - Easy expansion into a communication-capable load feeder using AS-i add-on modules - On-site safe disconnection also possible using AS-i add-on modules - Standardized integration of the loads in higher-level control systems using AS-i Your advantage: Compact solution with minimum wiring outlay for actuating direct-on-line and reversing starters in the control cabinet.	3RA6 3RA61, 3RA62	From 8/56 From 8/66
SIRIUS M200D motor starter	Motor starters for use in the field, high degree of protection SIRIUS M200D motor starters for AS-Interface - High degree of protection IP65 for cabinet-free design - As direct-on-line or reversing starters for motors up to $5.5 \mathrm{~kW} / 400 \mathrm{~V}$ - Mechanical or electronic switching for high switching frequencies - Optional with manual operation and brake control - Expanded diagnostics and parameterization possible through AS-Interface - Easy and consistent integration in STEP 7 through AS-Interface Your advantage: The correct solution for all simple applications in conveyor systems with spatially distributed drives.	3RK1	From 9/23

		Article No.	Page
Slaves (continued)			
SINAMICS G110M frequency converter	SINAMICS G110M distributed converters Wide power range from 0.37 to 4 kW - Preconfigured with SIMOGEAR - Rugged, with degree of protection IP65/IP66, up to $55^{\circ} \mathrm{C}$ ambient temperature - Local commissioning via DIP switch, standard USB interface and potentiometer or Intelligent Operator Panel (IOP) - Integrated safety functions (STO locally via F-DI or via PROFIsafe) - Integrated, specific software functionality for conveyor systems - Quick stop function for fast reaction times to sensors - Limit switch functionality, e.g. for rotary table, corner transfer unit Your advantage: The simple solution for compact drives with safety requirements in conveyor technology	6SL3517 power modules, 6SL3544 control units	Catalog D 31.2
SINAMICS G110D frequency converter	SINAMICS G110D distributed converters High degree of protection IP65 for cabinet-free installation - Wide power range from 0.75 to 7.5 kW - Easy commissioning and maintenance thanks to standardized plug-in connections for bus, energy and I/Os - Expanded diagnostics and parameterization through AS-Interface - Optional maintenance switch - Optional manual local operation - Same plugs used as for the M200D motor starter Your advantage: Easy, consistent implementation of distributed system concepts thanks to scaling of SINAMICS G110D, SINAMICS G120D and SIRIUS M200D products.	6SL3511	Catalog D 31.2
	Commanding and signaling devices		
AS-Interface module	SIRIUS ACT pushbuttons and indicator lights for AS-Interface - Modular configuration based on individual specifications, or as enclosure with standard components - AS-Interface modules for base mounting or mounting in enclosure - Up to six command points for standard signals or EMERGENCY STOP - Degree of protection IP66/IP67/IP69 (IP69K) - Metal or plastic version - Indicator lights with integrated LED - Any change of equipment possible even after installation Your advantage: Complete operating system with simple AS-Interface connection for your plant.	3SU14 modules 3SU18 enclosure	13/110 From 13/123
	SIRIUS 8WD4 signaling columns - Many optical and acoustic elements can be combined - Up to four signaling elements can be connected using an AS-Interface adapter element - With integrated LEDs or with BA 15d base for LEDs/incandescent lamps - For fastening to connection elements (screw or spring-loaded terminals) - 24 V DC, diameters 50 mm and 70 mm - Connection with bayonet mechanism	8WD4	From 13/184
Signaling AS-Interface column adapter element	Your advantage: Signaling columns for monitoring production sequences and for visual or acoustic warnings in emergency situations, with easy AS-Interface connection.		

Rugged, with degree of protection IP65/IP66, up to $55^{\circ} \mathrm{C}$ ambient temperature or Intelligent Operator Panel (IOP)

- Integrated safety functions (STO locally via F-DI or via PROFIsafe)
- Integrated, specific software functionality for conveyor systems - Quick stop function for fast reaction times to sensors

而 in conveyor technology

- Wide power range from 0.75 to 7.5 kW
- Easy commissioning and maintenance thanks to standardized plug-in connections for bus,
- Expanded diagnostics and parameterization through AS-Interface
- Optional maintenance switch
- Optional manual local operation
- Same plugs used as for the M200D motor starter

位 to scaling of SiNamics Gi10D, SINAMICS G120D and Sirius M200D products.

SIRIUS ACT pushbuttons and indicator lights for AS-Interface

- Modular configuration based on individual specifications, or as enclosure with
- Up to six command points for standard signals or EMERGENCY STOP
- Degree of protection IP66/IP67/IP69 (IP69K)
- Metal or plastic version
- Indicator ights with integrated LED

Your advantage: Complete operating system with simple AS-Interface connection for your plant.

- Many optical and acoustic elements can be combined
- Up to four signaling elements can be connected using an AS-Interface adapter element
- With integrated LEDs or with BA 15d base for LEDs/incandescent lamps
- For fastening to connection elements (screw or spring-loaded terminals)
e

Your advantage: Signaling columns for monitoring production sequences and for visual or acoustic warnings in emergency situations, with easy AS-Interface connection. adapter element

IP20, 3 A

IP20, 8 A

PSN130S
30 V DC, 8 A

SITOP PSU100M,
24 V DC, 20 A

S22.5
data decoupling module

DCM 1271
data decoupling module Transmission media

AS-Interface shaped cable for connection of network stations

AS-Interface shaped cable

- No polarity reversal thanks to trapezoidal shape
- Cables made of optimized material for different operating conditions
- Special version according to UL CLASS 2 available

Your advantage: Fast replacement and connection to AS-Interface by piercing method.

30 V power supply units

Standard 30 V power supply units without data decoupling
From 2/67

- Power spectrum 3 A, 4 A and 8 A
- Overload and short-circuit-proof in every performance class
- Diagnostics: With output voltage > 26.5 V DC

LED and signaling contact for output voltage 30 V O.K.

- Primary-side connection to 120/230 V AC (1-phase) with automatic range selection

Your advantage: Economical alternatives in conjunction with data decoupling modules while making full use of the maximum AS-Interface cable length.

24 V power supply units

Standard 24 V power supply units (SITOP), without data decoupling
15/1 or Catalog KT 10.1

- Power spectrum 2.5 to 40 A
- Overload and short-circuit-proof in every performance class
- Add-on modules for signaling, redundancy, buffering and UPS
- 1-phase, 2-phase and 3-phase versions

Your advantage: Economical alternatives in conjunction with data decoupling modules.

S22.5 data decoupling modules

3RK1 From 2/69

- Degree of protection IP20, narrow design 22.5 mm
- Supply of several AS-i networks with a single power supply unit
- Single and double data decoupling
- Operation with 24 V DC or 30 V DC

Your advantage: Cost-effective installation of AS-i networks in conjunction with standard power supply units.

DCM 1271 data decoupling module for SIMATIC S7-1200

- Simple data decoupling in IP20 design
- Supply of several AS-i networks with a single power supply unit
- Operation with 24 V DC or 30 V DC

Your advantage: Cost-effective installation of AS-i networks in conjunction with standard power supply units in the design of a SIMATIC S7-1200 module.

Article No.
Page

Article

3RX9 2/65

- With wide performance spectrum from 2.6 to 8 A
- Degree of protection IP20
- Separation of data and energy by means of the integrated data decoupling
- UL/CSA approval means the power supplies can be used worldwide,
2.6 A version with output power restricted to max. 100 W
(for Class 2 circuits in accordance with NEC)
- Certified for global use
- Integrated ground-fault and overload detection save the need for additional components and make applications reliable
- Diagnostics memory, remote signaling and Remote RESET allow fast detection of faults in the system
- Ultra-wide input range enables 1- and 2-phase applications (8 A version)

Your advantage: Optimum performance for each application.

3RX9	$2 / 74$

$\left.\begin{array}{lll} & \text { Article No. } & \text { Nage } \\ \hline\end{array} \begin{array}{l}\text { Accessories comprise tools for mounting, installation and operating as well as individual } \\ \text { components. }\end{array}\right]$

Reading out and adjusting the slave address 0 to 31 or 1 A to $31 \mathrm{~A}, 1 \mathrm{~B}$ to 31 B ,
Rautomatic addressing aid and prevention of double addresses
, IO, ID, ID2) ad according to AS-Interface specification V3.0, including safe input slaves and complex CTT2 slaves

- Display of the operational current in case of direct connection of an AS-i slave nge from 0 to 150 mA addressing
Your advantage: Easiest way to address and test the slaves.
- Diagnostics units for completely checking the quality and function of an AS-Interface installation
- Transmission of collected data through an RS 232 interface to a PC, evaluation by software
- Easy and user-friendly operation
- Automatically generated test logs
- Process data can be monitored online
- In addition to digital I/O data it is possible to view analog values and safety slaves in data mode.

Your advantage: Preventative testing of an AS-Interface network is possible, recorded logs facilitate remote diagnostics.

Individual components such as sealing caps, cable adapters, distributors,

3RX9, 6ES7

Industrial communication
Introduction
AS-Interface

Connection methods

(1)	Screw terminals
∞	Spring-loaded terminals,
spring-loaded terminals (push-in)	
$\square--$	COMBICON connectors (plug-in screw terminals)
The connection method is indicated in the corresponding tables sy the respective symbol shown on an orange background.	

Overview

Engineering and visualization

IO-Link - more than just another interface

IO-Link is an open communication standard for sensors and actuators - defined by the IO-Link Consortium.

IO-Link is a smart concept for the uniform connection of actuators and sensors to the control level by means of a low-cost point-to-point connection.
As an open interface, IO-Link can be integrated into all standard fieldbus and automation systems.

The IO-Link communication standard below fieldbus level enables central error diagnostics and localization down to actuator/sensor level, and facilitates both startup and maintenance by allowing parameter data to be dynamically changed directly from the application.

The increasing intelligence of field devices and their integration into automation as a whole now allows data to be accessed right down to the lowest field level. The result: greater plant availability and less engineering work.

Transparency in the process through IO-Link

High system availability and data transparency are market requirements that must also be met by the connecting of innovative control technology to a control system. A systematic diagnostics concept and efficient handling of parameter data are required for this purpose in automation.
With the aid of the IO-Link communication standard, a communication link is established between switchgear and controller, and this allows data to be exchanged efficiently. Based on a standard cable, it is therefore possible to integrate parameter, process and diagnostic data and measured values into the plant automation with ease. For example, the available diagnostic data allow potential errors to be detected quickly, thus avoiding lengthy plant downtimes

As a consequence of their basic function, such as overload protection (SIRIUS 3RB24 electronic overload relays for IO-Link), many controls have measured values. The availability of these via IO-Link now allows conclusions to be drawn at an early stage concerning wear and tear in the application.

At the same time the option of parameterizing via IO-Link supports the device not just when parameters concerning operating time are changed, but also when the device is replaced. In the case of a spare part, for example, the parameters can be quickly transmitted to a new device via the communication system.

		Article No.	Page
Input modules			
	IO-Link input modules make full use of the potential of IO-Link and are a more attractive solution economically than a direct sensor connection.		
K20 IO-Link module with eight digital inputs	K20 IO-Link modules - Four or eight digital inputs - Degree of protection IP65/IP67 - Connection sockets in M8/M12 - Contacting protected against polarity reversal Your advantage: Reduction of mounting and startup times by up to 40%.	3RK5	From 2/99
Industrial controls			
	Starters and contactor assemblies for direct-on-line, reversing and star-delta (wye-delta) starting can be connected to IO-Link through function modules without any additional, complicated wiring.		
	Contactors and contactor assemblies		
	SIRIUS 3RT contactors, 3-pole up to 250 kW SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW	3RT20 3RA23 3RA24	From 3/17 From 3/147 From 3/162
$\because \%$ ¢	- Notable reduction of wiring in the control circuit		
9	- Integrated mechanical interlocking - Prevention of wiring errors in the main circuit		
	SIRIUS 3RA27 function modules	3RA2711	From 3/108
	- Connection of 3RT20 power contactors with communication capability, 3RA23 reversing contactor assemblies, and 3RA24 contactor assemblies for star-delta (wye-delta) starting to IO-Link		
"6.cक\%	- Reduction of control current wiring through plug-in technology, feeder groups and integrated monitoring of circuit breaker/motor starter protector and contactor		
SIRIUS 3RA2711 function module for IO-Link	- Reduced space requirement in the control cabinet through fewer digital inputs and outputs in the control system		
	- Simple user program through operation of feeders instead of individual contactors		
	- Enhanced operational reliability and quick wiring thanks to spring-loaded terminals		
	- Can be flexibly combined with many automation solutions using the open, standardized IO-Link wiring system		
	- Small number of variants through use of identical modules for size S00 to S3 contactors		
	Your advantage: Shortening of mounting and startup times		
	Overload relays		
	SIRIUS 3RB24 electronic overload relays for IO-Link for high-feature applications	3RB24	From 7/136
	- Diagnostics and current value transmission via IO-Link		
\cdots	- Current measuring modules (3RB29) for current values from 0.3 to 630 A		
	- Controlling direct-on-line, reversing and wye-delta starters via IO-Link in conjunction with contactors		
	- Full motor protection through PTC connection		
SIRIUS 3RB24 and preventative maintenance.			
	Motor starters for use in the control cabinet	3RA6	From 8/56
	SIRIUS 3RA64, 3RA65 compact starters for IO-Link	3RA64, 3RA65	From 8/68
	- Integrated functionality of a circuit breaker, contactor and electronic overload relay and various functions of optional mountable accessories		
	- Can be used for direct starting of standard three-phase motor up to 32 A (approx. $15 \mathrm{~kW} / 400 \mathrm{~V}$)		
	- Compact design offers enormous savings in space and wiring in the control cabinet		
	- Low variance of devices thanks to wide setting ranges for the rated current and wide voltage ranges		
SIRIUS 3RA64 compact starter	Your advantage: The diagnostics data of the process collected by the 3RA6 compact starter, e.g. short circuit, end of service life, limit position, etc., are not only indicated on the compact starter itself but also transmitted to the higher-level control system through IO-Link.		

IO-Link

		Article No.	Page
RFID system			
RFID system for IO-Link	SIMATIC RF200 RFID system in the HF range Products SIMATIC RF210R, SIMATIC RF220R, SIMATIC RF240R, SIMATIC RF250R, SIMATIC RF260R - Simple identification tasks such as reading an ID number (UID) - Reading of user data - Writing of user data - No RFID-specific programming, ideal for those new to RFID - Simple connection via master modules for IO-Link, such as SIMATIC S7-1200, ET 200SP, ET 200pro, ET 200eco PN and ET 200AL - Use with the tried and tested ISO 15693 transponders (MDS Dxxx)	6GT2	Catalog ID 10
Device Description (IODD)			
IODD files for IO-Link	IODD files These files provide the device description for IO-Link devices. - Comprehensive IODD catalog of SIEMENS IO-Link devices - Freely available for download from Industry Online Support, see https://support.industry.siemens.com/cs/ww/en/ps/15851	--	2/91
	IODDfinder The entire world of IO-Link under one roof The IODDfinder is a service provided by the IO-Link community. It is a central cross-vendor database for descriptive files (IODDs). In addition, the platform provides an overview of the available IO-Link devices. For more information, see https://ioddfinder.io-link.com/\#/.	--	2/91
Software			
	STEP 7 PCT (Port Configuration Tool) Engineering software for configuring the IO-Link master modules for SIMATIC S7-1200, ET 200SP, ET 200pro, ET 200eco PN and ET 200AL - Available as a stand-alone version or integrated into STEP 7 (V5.5 SP1 and higher) and TIA (V12 and higher) - Engineering of the IO-Link devices connected to the master - Monitoring of the process image of the IO-Link devices - Open interface for importing further IODDs - Freely available for download from Industry Online Support, see https://support.industry.siemens.com/cs/ww/en/view/32469496	--	2/91
 IO-Link device function block for TIA Portal	IO-Link function blocks (IO-Link master and IO-Link device) STEP 7 function block for easy acyclical data exchange in the user program - Freely available for download from Industry Online Support, see https://support.industry.siemens.com/cs/ww/en/view/82981502	--	2/91
 "Siemens IO-Link Devices" block library	"Siemens IO-Link Devices" block library This library provides function blocks and user-defined data types (UDTs) for all IO-Link devices from the Siemens portfolio. These blocks and UDTs standardize and simplify communication with IO-Link devices. - Freely available for download from Industry Online Support, see https://support.industry.siemens.com/cs/ww/en/ps/90529409	--	2/91

IODDfinder for IO-Link

The entire world of IO-Link under one roof
The IODDfinder is a service provided by the IO-Link community. It is a central cross-vendor available IO-Link devices.
For more information, see https://ioddfinder.io-link.com/\#/.

STEP 7 PCT (Port Configuration Tool)
 ring sotware for configuring

200SP, ET 200pro, ET 200eco PN and ET 200AL

- Engineering of the IO-Link devices connected to the master
- Monitoring of the process image of the IO-Link devices
- Open interface for importing further IODDs
- Freely available for download from Industry Online Support, see

IO-Link function blocks (IO-Link master and IO-Link device)

This library provides function blocks and user-defined data types (UDTs) for all IO-Link devices from the Siemens portfolio. These blocks and UDTs standardize and simplify communication with IO-Link devices.

- Freely available for download from Industry Online Support, see https://support.industry.siemens.com/cs/ww/en/ps/90529409 block library

Industrial communication

AS-Interface
Introduction

Communication overview

Overview

AS-Interface is an open, international standard according to IEC/EN 62026-2 for process and field communication. Leading manufacturers of actuators and sensors all over the world support the AS-Interface. Interested companies are provided with the electrical and mechanical specifications by the AS-Interface Association.

AS-Interface is a single master system. For automation systems from Siemens, there are communications processors (CPs), communication modules (CMs) and routers (links) that control the process or field communication as masters, and actuators and sensors that are activated as AS-Interface slaves.

AS-Interface in the SIMATIC NET communications landscape

Benefits

An important characteristic of the AS-Interface technology is the use of a shared twisted pair for data transmission and distribution of auxiliary power to the sensors and actuators. An AS-i power supply unit or alternatively a standard power supply unit that meets the requirements of the AS-Interface transmission method and has an external AS-i data decoupling module is used for the distribution of auxiliary power. The AS-Interface cable used for the wiring is mechanically coded and hence protected against polarity reversal and can be easily contacted by the insulation piercing method.

Elaborately wired control cables in the control cabinet and marshaling racks can be replaced by AS-Interface.
The AS-Interface cable can be connected to any points thanks to a specially developed cable and connection by the insulation piercing method.
With this concept you become extremely flexible and achieve high savings.

Application

I/O data exchange

The AS-i master automatically transfers the inputs and outputs between the controller and the digital and analog AS-Interface slaves. Slave diagnostics information is forwarded to the control system when required.
The latest AS-Interface masters according to the AS-Interface specification V 3.0 support integrated analog value processing. This means that data exchange with analog AS-Interface slaves is just as easy as with digital slaves.

Command interface

In addition to I/O data exchange with binary and analog AS-Interface slaves, the AS-Interface masters can provide a number of other functions through the command interface.
Hence it is possible, for example, for slave addresses to be issued, parameter values transferred or configuration information read out from user programs.
For more information, see
https://support.industry.siemens.com/cs/ww/en/view/51678777.

Overview

To implement communication, the following components of a system installation are available:

- AS-i master modules for central control units such as SIMATIC S7, ET 200M/ET 200SP distributed I/Os, or network transitions from PROFIBUS or PROFINET to AS-Interface
- AS-i power supply unit or alternatively a standard power supply unit in combination with an AS-i data decoupling module for the power supply to the slaves and sensors
- AS-Interface shaped cables
- Network components such as repeaters and extension plugs (cannot be used for AS-i Power24V)
- I/O modules (AS-i slaves) for connection of standard sensors/actuators
- Actuators and sensors with integrated AS-i slave
- Safe I/O modules (ASIsafe slaves) for transmitting safety-related data through AS-Interface
- Addressing device for setting slave addresses during commissioning

Example of a configuration with the system components

Features

Standard	IEC/EN 62026-2
Topology	Line, star or tree structure (same as electrical wiring $)$
Transmission medium	
	Unshielded twisted pair $\left(2 \times 1.5 \mathrm{~mm}^{2}\right)$ for data and auxiliary power
Connection method	Contacting of the AS-Interface cable by insulation piercing method
Maximum cable length	- 100 m without repeater
	- 200 m with extension plug
- 300 m with two repeaters in series connection	
- 600 m with extension plugs and two repeaters	
connected in parallel	

$\left.\begin{array}{ll}\text { Maximum cycle time } & \text { - } 5 \mathrm{~ms} \text { in maximum configuration with } \\ 31 \text { standard addresses } \\ \text { - } 10 \mathrm{~ms} \text { in maximum configuration with } \\ & 62 \text { A/B addresses } \\ & \text { - Profile-specific for slaves with extended data, } \\ \text { e.g. analog slaves }\end{array}\right]$

Overview

Scope of AS-Interface specification V3.0

Maximum number of slaves		Number of digital inputs	Number of digital outputs DQ
Digital	Analog	ASIsafe	DI

Basic data

- AS-Interface specification V3.0 describes a fieldbus system with an AS-i master and up to 62 AS-i slaves.
- Every AS-i slave with standard addressing occupies one AS-i address (1...31).
- Slaves with extended addressing divide an AS-i address into an A address (1A...31A) and a B address (1B...31B). Up to 62 A/B slaves can be connected accordingly to one AS-Interface network.
- Mixed operation of slaves with standard addressing and extended addressing (A/B slaves) is possible without difficulty. The AS-i master identifies automatically which type of slave is connected, so no special adjustments are required of the user.
- One digital AS-i slave typically has up to four digital inputs and four digital outputs.
- Transmission of the digital input/output data requires max. 5 ms cycle time for 31 slaves; for further values, see "Communication cycle".
- Integrated analog value transmission permits access to both analog values and digital values without the need for any special function blocks.

Communication cycle

Maximum cycle time (digital signals)

- 5 ms with 31 slaves
- 10 ms with 62 slaves
- Up to 20 ms for slaves with A/B address 4 DI / 4 DQ
- Up to 40 ms for slaves with A/B address 8 DI / 8 DQ

Each address is queried in max. 5 ms cycle time. If two A/B slaves are operated on one basic address (e.g. 12A and 12B), a maximum of 10 ms will be required to update the data of both slaves.
Slaves with A/B addressing transmit max. 4 DI / 3 DQ in one cycle.

Slaves with A/B addressing and 4 DQ or 4 DI / 4 DQ transmit the output data in two consecutive cycles. The double transmission time of these outputs has no effect in typical applications. The transmission procedure is performed automatically by the AS-i master in accordance with AS-i specification V3.0 These slaves are identified in the selection data with addressing type A/B (spec. V3.0).

Slaves with a single A/B address and $8 \mathrm{DI} / 8 \mathrm{DQ}$ transmit the input and output data in four consecutive cycles.
The transmission time of the inputs/outputs of these slaves increases accordingly. The transmission procedure is performed automatically by the AS-i master in accordance with AS-i specification V3.0.
The slaves offered by Siemens with 8 DI or 8 DI / 2 DQ use two AS-i addresses so that the time-consuming procedure is not needed and a fast data update is ensured.
All slave types can be mixed and used on a single AS-Interface network.

For more information, such as the addressing type used by the AS-Interface slave (standard or A/B address), see the "Selection and ordering data" for the relevant slave.

More information

System Manual for AS-Interface, see
https://support.industry.siemens.com/cs/ww/en/view/26250840

AS-Interface product range

AS-Interface products from Siemens use the current AS-Interface specification V3.0, which is standardized internationally as IEC/EN 62026-2

The alternating pulse modulation developed more than 20 years ago for AS-Interface has proven to be a reliable transmission method with which the direct voltage supply for the bus modules and the connected sensors is provided on the standard twisted pair.

Multiple development stages were implemented to produce the proven-in-use system components with optimum EMC properties available today. The extensive product range with AS-Interface specification V3.0 undergoes constant innovation and is extremely cost-efficient, both to install and operate.

The bus cable can be retrofitted with repeaters of AS-Interface specification V3.0, and the modules function without any reciprocal interference. Master modules from Siemens enable ideal integration into the SIMATIC environment, in particular for the AS-Interface master of the ET 200SP distributed I/O system.

The underlying industrial requirements for the system concept are still applicable today: Numerous individual digital input and output signals are spatially distributed in the machine. Rather than having to install thick cable harnesses from the control cabinet to the sensors and actuators, smaller, more manageable AS-i modules are simply inserted in situ onto the bus cable in the IP67 enclosure, and the sensors and actuators connected with short M12 cables.
An additional AS-i module is installed in proximity to the next sensor to ensure that the length of the M12 cables is kept as short as possible. As analog signals are likewise transmitted without any problems, the AS-Interface also replaces the long, shielded analog cables.
Depending on requirements, the switching devices can also be connected to AS-i modules with terminal connection or conveniently used with the integrated AS-i connection. Motor controllers with digital and analog inputs and outputs are also offered with the current AS-Interface specification V3.0.
Safety signals are also transmitted simply and flexibly by the AS-Interface. The safety-related sensors for protective doors and EMERGENCY STOP buttons can be installed and retrofitted in any position.
The AS-i Safety functionality from Siemens has been continuously optimized and complies with the proven AS-Interface specification V3.0.
For industrial components which require greater transmission capacities, Siemens provide respective solutions with the suitable communication systems.
The AS-Interface system from Siemens continues to provide an ideal and consistent solution for a multitude of simple sensors and actuators, including safety technology and special applications.
Available masters with the latest AS-Interface specification V3.0

- CM AS-i Master ST, F-CM AS-i Safety ST (ET 200SP)
- CM 1243-2 (S7-1200)
- CP 343-2P / CP 343-2 (S7-300 / ET 200M)
- DP/AS-Interface Link 20E

Overview

More information

For a complete overview of AS-i Power24V-capable devices currently available from Siemens, see
https://support.industry.siemens.com/cs/ww/en/view/42806066
For details of AS-i Power24V, see System Manual for AS-Interface,
https://support.industry.siemens.com/cs/ww/en/view/26250840

AS-Interface data decoupling modules for AS-i Power24V Left: S22.5 data decoupling module,
Right: DCM 1271 data decoupling module for SIMATIC S7-1200
Parallel wiring frequently dominates, above all, in applications with very few I/Os. AS-Interface can, however, also replace extensive parallel wiring in small applications at a favorable price.
AS-i Power24V enables an already existing standard 24 V DC power supply unit to be used for the AS-i network.

Data and power in the standard AS-Interface network

One of the great advantages of AS-Interface is the ability to convey not only data, but also the power needed for the connected slaves and sensors over the same unshielded two-conductor cable. This is owed to the service-proven AS-Interface power supply units which provide integrated data decoupling as well as overload and short-circuit protection and integrated ground-fault monitoring.

AS-i Power24V

Instead of the AS-Interface power supply unit (with 30 V output voltage and integrated data decoupling) the AS-i cable is supplied via a data decoupling module from a 24 V standard power supply unit. The communication technology of AS-Interface works at the same high level of quality with an operating voltage of both 30 V DC and 24 V DC.

	Key data of AS-i Power24V
Number of slaves	Up to 62 slaves and up to 31 safe slaves
Topology Range Components	Any - Up to 50 m and limitation to max. 40 V
	- AS-i Power24V-capable data decoupling with integrated ground-fault detection
	- AS-i Power24V-capable masters, slaves and components

Requirements for operation of an AS-i Power24V network

- When 24 V power supply units are used, the maximum network range of 50 m must be observed to reach slaves and sensors with a sufficient level of voltage (at least 18 V).
- The power supply units must comply with the standard ES1 (IEC/EN 62368-1) or PELV (Protective Extra Low Voltage)/ SELV (Safety Extra Low Voltage) standards, have a residual ripple of $<250 \mathrm{mV}$ pp , and must limit the output voltage to a maximum of 40 V in the event of a fault. We recommend SITOP power supplies,
see page 15/1 or Catalog KT 10.1,
https://support.industry.siemens.com/cs/ww/en/view/109745655.
- When used in conjunction with standard 24 V power supply units, each AS-Interface network requires AS-i Power24V-capable data decoupling, see page 2/69 onwards.
- For reliable operation of an AS-i network with 24 V voltage, it is important that the masters, slaves and other components are approved for AS-i Power24V. AS-i Power24V-capable AS-i components can also be used without restriction in standard 30 V AS-i networks.
- Use of repeaters or extension plugs in AS-i Power24V networks is not permitted.

Benefits

In small control cabinets the AS-i power supply unit can be replaced by an AS-i data decoupling module that is connected to an existing 24 V power supply unit.

- The advantages of the AS-i communication system in terms of commissioning, maintenance and diagnostics can be fully exploited.
- If a double data decoupling module is used, two AS-i networks can be supplied.

Application

Configuration of an AS-i Power24V network

Configuration of an AS-i Power24V network with an AS-Interface DCM 1271 data decoupling module and S7-1200 (simple network)

AS-Interface
ASIsafe

Introduction

Overview

More information

For further information and typical circuit diagrams on safety engineering, see https://support.industry.siemens.com/cs/ww/en/view/83150405

ASIsafe - Safety is included

ASIsafe enables the integration of safety-related components such as EMERGENCY STOP pushbuttons, protective door switches, cable-operated switches or other AS-i safety sensors in an AS-Interface network. These are fully compatible with the familiar AS-Interface components (masters, slaves, power supplies, repeaters, etc.) in accordance with IEC/EN 62026-2 and are operated in conjunction with them on the yellow AS-Interface cable.

Tested safety

- Protective door switches
- Cable-operated switches
- Other AS-i safety sensors

The transmission method for safety-related signals is released for applications up to PL e according to EN ISO 13849-1 and up to SIL 3 (IEC 62061).

Higher-level control

As usual, nodes on the AS-Interface bus are controlled in operation by the standard program of the higher-level SIMATIC (F) CPU or by a SINUMERIK control.

Configuring safety functions

In order to implement safe functions, the information from the safe and standard nodes must be combined logically and further parameters set. The configuration of the safety functions depends on which safety solution is being used:

- AS-i safety solution with F-CPU: In conjunction with the modular safety AS-i master, which is formed by combining the CM AS-i Master ST and F-CM AS-i Safety ST modules in an ET 200SP station, all safety functions and combinations are configured via STEP 7 and processed in the controller (F-CPU) by the fail-safe program.
- In the case of the AS-i safety solution with local evaluation by MSS: In conjunction with the Modular Safety System all safety functions and combinations are configured using the SIRIUS Safety ES software and processed in the MSS central unit.

AS-i safety solution with F-CPU

AS-Interface configuration with AS-i master modules in the ET 200SP

The AS-i communication modules in the ET 200SP facilitate the use of AS-Interface under fail-safe SIMATIC or SINUMERIK controllers.

The allocation of tasks is as follows:

- Acquisition of safety-related signals via safe input slaves on the AS-Interface bus.
Further signals can be detected through other F-DI modules of the SIMATIC.
- Evaluation and processing of signals via the fail-safe SIMATIC or SINUMERIK control
- Reacting by means of safety output modules on the AS-Interface bus or other SIMATIC F-DQ modules

Simple combination of the CM AS-i Master ST and F-CM AS-i Safety ST modules in one ET 200SP station results in a powerful, safety-oriented network transition between PROFINET (or PROFIBUS) and AS-Interface, which can be expanded further in a modular fashion with further I/O modules of the ET 200SP.
Using these design methods, it is possible to create configurations for virtually any application. Besides the single AS-i master, double, triple or generally multiple masters can be realized with or without fail-safe functionality.

AS-i safety solution with local evaluation by MSS

AS-Interface design with 3RK3 Modular Safety System (MSS)

The local AS-i safety solution uses the 3RK3 Modular Safety System (MSS) for safety-related processing. In this case, one standard controller (i.e. no F-CPU) and one standard AS-i master are sufficient.

The allocation of tasks is as follows:

- Acquisition of safety-related signals via safe input slaves on the AS-Interface bus
Further signals can be acquired via F-DI inputs of the central unit or the expansion modules of the MSS
- Evaluation and processing of signals via the central unit of the MSS
- Reaction via safe output modules on the AS-Interface bus or via F-DQ outputs of the central unit or expansion modules of the MSS

SIRIUS 3RK3 Modular Safety System, see page 11/36 onwards.

Benefits

- Simple system structure thanks to standardized AS-Interface technique
- Safety-related and standard data on the same bus
- Existing systems can be expanded quickly and easily
- Optimum integration in TIA (Safety Diagnostics) and Safety Integrated
- Inclusion of the safety signals in the plant diagnostics, also on existing HMI panels
- Approved to PL e according to EN ISO 13849-1 or SIL 3 according to IEC 62061
- ASIsafe is certified by TÜV (Germany), NRTL (USA) and INRS (France)

Application

Integrated safety technology in the AS-Interface system can be used wherever EMERGENCY STOP buttons, protective door interlocks, safety switches, light arrays and two-hand operation are installed.

Industrial communication

AS-Interface
ASIsafe

AS-Interface safety monitors

Selection and ordering data

	Version	SD	Article No.	Price per PU		PS*	PG
		d					
3RK1105-1BE04-0CAO	Basic safety monitors Version 3 With screw terminals, removable terminals, width 45 mm		Screw terminals	(1)			
	-1 enabling circuit (monitor type 1)	2	3RK1105-1AE04-0CA0		1	1 unit	42C
	- 2 enabling circuits (monitor type 2)	2	3RK1105-1BE04-0CA0		1	1 unit	42C
	Expanded safety monitors Version 3 With screw terminals, removable terminals, width 45 mm						
	- 1 enabling circuit (monitor type 3)	2	3RK1105-1AE04-2CA0		1	1 unit	42C
	- 2 enabling circuits (monitor type 4)	2	3RK1105-1BE04-2CA0		1	1 unit	42C
	Expanded safety monitor with integrated safe slave Version 3 With screw terminals, removable terminals, width 45 mm						
	- 2 enabling circuits including control of a safe AS-i output/safe coupling (monitor type 6)	2	3RK1105-1BE04-4CAO		1	1 unit	42C
	Basic safety monitors Version 3 With spring-loaded terminals, removable terminals, width 45 mm		Spring-loaded terminals	$\frac{\infty}{\square}$			
	- 1 enabling circuit (monitor type 1)	2	3RK1105-1AG04-0CA0		1	1 unit	42C
	- 2 enabling circuits (monitor type 2)	2	3RK1105-1BG04-0CA0		1	1 unit	42 C
	Expanded safety monitors Version 3 With spring-loaded terminals, removable terminals, width 45 mm						
	- 1 enabling circuit (monitor type 3)	2	3RK1105-1AG04-2CA0		1	1 unit	42C
	- 2 enabling circuits (monitor type 4)	2	3RK1105-1BG04-2CA0		1	1 unit	42 C
	Expanded safety monitor with integrated safe slave Version 3 With spring-loaded terminals, removable terminals, width 45 mm						
	- 2 enabling circuits including control of a safe AS-i output/safe coupling (monitor type 6)	2	3RK1105-1BG04-4CA0		1	1 unit	42C

Accessories

Overview

AS-Interface safety modules: K45F (left), K20F (center) and SC17.5F (right)

S45F SlimLine module, safe AS-i output
Safety modules for AS-Interface (ASIsafe modules) are available for field use in degree of protection IP67 (K20F and K45F compact modules) and for the control cabinet (SC17.5F SlimLine Compact modules) in degree of protection IP20.
A very compact module with an optimum price/performance ratio is thus available for every application.
All modules for the connection of (mechanical) switches and safety sensors with contacts feature cross-circuit monitoring of the connected sensor line.

AS-Interface safety modules

The following modules are available for selection:
K20F compact safety modules for operation in the field
Being only 20 mm wide, the K20F module is particularly well suited for applications where modules need to be arranged in the most confined of spaces. The K20F modules are connected to the AS-Interface with a round cable with M12 cable box instead of with the AS-Interface flat cable. This enables extremely compact installation. The flexibility of the round cable means that it can also be used on moving machine parts without any problems. The K20 modules are also ideal for such applications as their non-encapsulated design makes them particularly light in weight.

K45F compact safety modules for use in the field

The platform of the K45F modules covers the connection of ("mechanical") switches/safety sensors with contacts:

- K45F 2 F-DI: Two safety-related inputs in operation up to Category 2 according to EN ISO 13849-1. If Category 4 is required, a two-channel input is available on the module.
- K45F 2 F-DI / 2 DQ: There are also two standard outputs in addition to the safe inputs. Supplied from the yellow AS-i cable
- K45F 2 F-DI / 2 DQ $U_{\text {aux: }}$ same as K45F 2 F-DI/2 DQ, but supplied from the black 24 V DC cable
- K45F 4 F-DI: Four safety-related inputs in operation up to Category 2, two for Category 4. Extremely compact double slave (uses two standard AS-i addresses)
SC17.5F SlimLine Compact safety modules with a width of just 17.5 mm for use in control cabinets and local control boxes

With a width of only 17.5 mm , the safe SC17.5F SlimLine Compact modules are ideal for space-saving use in a control cabinet. The modules have two safety inputs for connecting signals to ASIsafe networks in the control cabinet. For operation up to Category 2, both inputs can be separately assigned; if Category 4 is required, a two-channel input is available on the module.
There are also two module variants which have two standard outputs in addition to the two safety inputs. The outputs are supplied either from the yellow AS-Interface cable alone, or via auxiliary voltage from the black 24 V DC cable. The supply voltage is set via a slide switch on the rear of the device.
When using several modules, they can be connected simply via the optional device connector. This simplifies the wiring. The yellow AS-i bus cable and the 24 V DC auxiliary voltage $U_{\text {aux }}$ then only need to be connected to one module.

Industrial communication
AS-Interface
ASIsafe

AS-Interface safety modules

S45F SlimLine safety modules with safety outputs for the safe distributed disconnection of actuators

With the S45F SlimLine safety module, a safe output signal of the ET 200SP module F-CM AS-i Safety ST can be used for distributed safety-related disconnection via ASIsafe.

To this end, the S45F module has a safety-related two-channel relay output. As an additional possibility the module offers normal switching of the output using an AS-i standard output bit.

The module has three digital inputs and two digital outputs for the additional connection of sensors and actuators. These can be used, among other things, for the required monitoring of downstream contactors of the feedback circuit.
The S45F module can also be controlled in a safety-related manner, for example by the modular 3RK3 ASIsafe/Advanced safety system. The module contains an AS-i slave for the non-safety-related inputs/outputs.

Selection and ordering data

\checkmark Available or possible
-- Not available or not possible
${ }^{1)}$ Module occupies two AS-Interface addresses

Standard I/O modules for AS-Interface

- For degree of protection IP67, see page 2/42 onwards
- For degree of protection IP20, see page 2/57 onwards

The existing SlimLine series of ASIsafe modules for use in the control cabinet and local control boxes is being replaced by the new SlimLine Compact series. We recommend that these new devices are used in future.

For the conversion table, see page 2/59.
Note:
The previous SlimLine devices are still available for use as replacements in existing systems. As a result of the innovation, the new SlimLine Compact devices are not fully compatible in terms of either mechanical dimensions or electrical properties.

Accessories

More information
Equipment Manual for SlimLine compact modules, see
https://support.industry.siemens.com/cs/ww/en/view/109481489

1) PC labeling system for individual inscription of unit labeling plates available from: murrplastik Systemtechnik GmbH (see page 16/16).

Overview

CM 1243-2 communication module for S7-1200

More information

Manuals, see https://support.industry.siemens.com/cs/ww/en/ps/15750/man For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see
https://support. industry.siemens.com/cs/ww/en/view/61892138
The CM 1243-2 communication module is the AS-Interface master for the SIMATIC S7-1200 and has the following features:

- Connection of up to 62 AS-Interface slaves
- Integrated analog value transmission
- Supports all AS-Interface master functions in accordance with the AS-Interface specification V3.0
- Indication of the operating state on the front of the device displayed via LED
- Display of operating mode, AS-Interface voltage faults, configuration faults and peripheral faults via LED behind the front panel
- Compact enclosure in the design of the SIMATIC S7-1200
- Suitable for AS-i Power24V and for AS-Interface with 30 V voltage: A standard 24 V power supply unit can be used in combination with the optional DCM 1271 data decoupling module.
- Configuration and diagnostics via the TIA portal

Design

The CM 1243-2 communication module is positioned to the left of the S7-1200 CPU and linked to the S7-1200 via lateral contacts.
It has:

- Terminals for two AS-i cables (internally jumpered) via two screw terminals
- One terminal for connection to the functional ground
- LEDs for indication of the operating state and fault statuses of the connected slaves
The screw terminals (included in scope of supply) can be removed to facilitate installation.

Function

The CM 1243-2 supports all specified functions of the AS-Interface specification V3.0.

The values of the digital AS-i slaves can be activated via the process image of the S7-1200. During configuration of the slaves in the TIA Portal, the values of the analog AS-i slaves can also be accessed directly in the process image.
It is also possible to exchange all data of the AS-i master and the connected AS-i slaves with the S7-1200 via the data record interface.
Changeover of the operating mode, automatic application of the slave configuration and the re-addressing of a connected AS-i slave can be implemented via the control panel of the CM 1243-2 in the TIA Portal.
The optional DCM 1271 data decoupling module (see "Accessories", page 2/29) has an integrated detection unit for detecting ground faults on the AS-Interface cable.
The integrated overload protection also disconnects the AS-Interface cable if the drive current required exceeds 4 A . For more information on DCM 1271, see page 2/71.

Notes on security:

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.
For more information about the subject of Industrial Security, see www.siemens.com/industrialsecurity.

Configuration

To configure CM 1243-2, you require STEP 7 V11 + SP2 or higher.

For STEP 7 V11 + SP2 or higher, the additional Hardware Support Package for CM 1243-2 is required. This is available via the Industry Online Support Portal, see
https://support.industry.siemens.com/cs/ww/en/view/72341852.
The software enables user-friendly configuration and diagnostics of the AS-Interface master and any connected slaves.
Alternatively, you can also apply the AS-Interface ACTUAL configuration at the "touch of a button" via the control panel integrated in the TIA Portal/STEP 7.
When operated on an S7-1200 CPU with firmware version V4.0 or higher, the firmware version V1.1 (or higher) is required for the CM 1243-2.

Benefits

- More flexibility and versatility in the use of SIMATIC S7-1200 as the result of a significant increase in the number of digital and analog inputs/outputs available
- Very easy configuration and diagnostics of the AS-Interface via the TIA Portal (STEP 7 V11+SP2 or higher)
- Simple operation with AS-Interface power supply (see page 2/65) possible without restrictions.
- Alternatively: No need for the AS-i power supply unit with AS-i Power24V. The AS-Interface cable is supplied through an existing $24 \vee$ DC PELV power supply unit. For decoupling, the AS-i DCM 1271 data decoupling module is required, see "Accessories" and page 2/71.
- LEDs for indication of fault statuses for fast diagnostics
- Monitoring of AS-Interface voltage facilitates diagnostics

Application

The CM 1243-2 is the AS-Interface master connection for the $12 x x$ CPUs of the SIMATIC S7-1200. Through connection to AS-Interface, the number of digital inputs and outputs available for the S7-1200 is greatly increased (max. 496 DI/496 DQ on the AS-Interface per CM).
The integrated analog value processing also makes the analog values available at the AS-Interface for the S7-1200. Up to 31 analog slaves with a standard address (each with up to four channels) or up to 62 analog slaves with an A/B address (each with up to two channels) are possible per CM.

Operating conditions

- The CM 1243-2 communication module exchanges data with the S7-1200 CPU with a cycle time of 10 ms .
- The AS-i cycle time depends on the AS-i bus capacity and is up to 5 ms in the case of 31 slaves addresses; for more information, see Equipment Manual for AS-i Master CM 1243-2 and AS-i DCM 1271 data decoupling module, https://support.industry.siemens.com/cs/ww/en/view/57358958.
- For calculation of the maximum switching frequency at inputs/outputs of AS-i slaves, these cycle times and the runtime of the user program must be added up.

Selection and ordering data

	Version	SD	Screw terminals	(1)		PS*	PG
		d	Article No.	Price per PU			
二z\%or	CM 1243-2 communication module	-	3RK7243-2AA30-0XB0		1	1 unit	42C
	- AS-Interface masters for SIMATIC S7-1200						
	- Corresponds to AS-Interface specification V3.0						
	- With screw terminals, removable terminals (included in the scope of supply)						
	- Dimensions (W $\times \mathrm{H} \times \mathrm{D} / \mathrm{mm}$) : $30 \times 100 \times 75$						
3RK7243-2AA30-0XB0							

Note:
The CM 1243-2 communication module is available as a SIPLUS version under Article No. 6AG1243-2AA30-7XBO in the extended temperature range (from -25 to $70^{\circ} \mathrm{C}$) and for use in harsh environmental conditions (coated according to environment standard IEC 60721).
For more information, see www.siemens.com/siplus-extreme.

Accessories

	Version	SD	Screw terminals	(1)	PU (UNIT, SET, M)	PS*	PG
		d	Article No.	Price per PU			
	DCM 1271 data decoupling module - With screw terminals, removable terminals (included in the scope of supply) - Dimensions (W $\times \mathrm{H} \times \mathrm{D} / \mathrm{mm}$): $30 \times 100 \times 75$	-	3RK7271-1AA30-0AA0		1	1 unit	42C
	Screw terminals (spare part) - 5-pole For CM 1243-2 AS-i master and AS-i DCM 1271 data decoupling module	5	3RK1901-3MA00		1	1 unit	42C
3RK7271-1AA30-0AA0	-3-pole For AS-i DCM 1271 data decoupling module for connecting the power supply unit	5	3RK1901-3MB00		1	1 unit	42C

AS-Interface
Masters
Masters for SIMATIC S7 > CP 343-2P/CP 343-2

Overview

CP 343-2P/CP 343-2

More information

Manuals, see https://support.industry.siemens.com/cs/ww/en/ps/15754/man
For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see
https://support.industry.siemens.com/cs/ww/en/view/61892138
AS-Interface block library for SIMATIC PCS 7 for easy connection of AS-Interface to PCS 7, see page 14/18 onwards

The CP 343-2P communications processor is the AS-Interface master for the SIMATIC S7-300 and the ET 200M distributed I/O station, with user-friendly parameterizing options.

The CP 343-2 is the basic version of the module.
The CP 343-2P/CP 343-2 has the following characteristics:

- Connection of up to 62 AS-Interface slaves
- Integrated analog value transmission
- Support of all AS-Interface master functions in accordance with the AS-Interface specification V3.0
- Status displays of operating states and indication of the readiness for operation of connected slaves by means of LEDs in the front panel
- Fault indications (including AS-Interface voltage errors, configuration errors) by means of LEDs on the front plate.
- Compact enclosure in the design of the SIMATIC S7-300
- Suitable for AS-i Power24V (from product version 2 / firmware version 3.1) and for AS-Interface with 30 V voltage
- Additionally for CP 343-2P: Supports the configuration of the AS-Interface network with STEP 7 V5.2 and higher

Design

The CP 343-2P/CP 343-2 is connected like an I/O module to the S7-300. It has:

- Two terminal connections for connecting the AS-Interface cable directly.
- LEDs in the front panel for indicating the operating state and the readiness for operation of all connected and activated slaves
- Pushbuttons for switching over the master operating state and for adopting the existing ACTUAL configuration of the AS-i slave as the TARGET configuration

Function

The CP 343-2P/CP 343-2 support all specified functions of the AS-Interface specification V3.0.
The CP 343-2P/CP 343-2 each occupy 16 bytes in the I/O address area of the SIMATIC S7-300. The digital I/O data of the standard slaves and A slaves is saved in this area. The digital I/O data of the B slaves and the analog I/O data can be accessed with the S7 system functions for read/write data records.

If required, master calls can be performed with the command interface, e.g. read/write parameters, read/write configuration.

For more information, see
https://support.industry.siemens.com/cs/ww/en/view/51678777.

Notes on security:

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.
For more information about the subject of Industrial Security, see www.siemens.com/industrialsecurity.

Configuration

All connected AS-Interface slaves are configured at the press of a button. No further configuration of the CP is required.

Additionally for CP 343-2P

The CP 343-2P also supports configuring of the AS-Interface network with STEP 7 V5.2 and higher. Specifying the AS-i configuration in HW-Config facilitates the setting of slave parameters and documentation of the plant. Uploading the ACTUAL configuration of an already configured AS-Interface network is also supported. The saved configuration cannot be overwritten at the press of a button and is therefore tamperproof.

Benefits

- Shorter startup times through simple configuration at the press of a button
- Design of flexible machine-related structures using the ET 200M distributed I/O system
- Provides diagnostics of the AS-Interface network
- Well suited also for complex applications thanks to connection options for 62 slaves and integral analog value processing
- Reduction of standstill and servicing times in the event of a fault thanks to the LED indicators:
- Status of the AS-Interface network
- Slaves connected and their readiness for operation
- Monitoring of the AS-Interface voltage
- Lower costs for stock keeping and spare parts inventory because the CP can be used for the SIMATIC S7-300 and also for the ET 200M
- Additionally for CP 343-2P: Improved plant documentation and support for service assignments thanks to a description of the AS-Interface configuration in the STEP 7 project
- Simple operation with AS-Interface power supply (see page 2/65) possible without restrictions.
- Alternatively: No need for the AS-i power supply unit with AS-i Power24V. The AS-Interface cable is supplied through an existing 24 V DC PELV power supply unit. An S22.5 AS-i data decoupling module (e.g. 3RK1901-1DE12-1AAO) is required for the decoupling, see page 2/69.

Application

The CP 343-2P/CP 343-2 is the AS-Interface master connection for the SIMATIC S7-300 and the ET 200M.

Through connection to AS-Interface it is possible to access max. 248 DI/248 DQ per CP, using 62 A/B slaves with 4 DI/4 DQ each.
With the integrated analog value processing, it is easy to transmit analog signals. Up to 62 analog slaves with an A/B address (each with up to two channels) or up to 31 analog slaves with a standard address (each with up to four channels) are possible per CP.

The CP 343-2P is the further development of the CP 343-2 and contains its entire functionality. An existing STEP 7 user program for a CP 343-2 can thus be used without restrictions with a CP 343-2P. It is only in STEP 7 HW-Config that the two modules are configured differently, with the CP 343-2P offering additional options. This is why the CP 343-2P is recommended.

Selection and ordering data

	Version	SD d	Article No.	Price per PU		PS*	PG
6GK7343-2AH11-0XA0	CP 343-2P communications processors - Device version with expanded configuration options for connection of SIMATIC S7-300 and ET 200M to AS-Interface - Configuration of the AS-i network using the SET key or STEP 7 (V5.2 and higher) - Without front connector - Corresponds to AS-Interface specification V3.0 - Dimensions (W x H x D/mm): $40 \times 125 \times 120$	-	6GK7343-2AH11-0XA0		1	1 unit	42C
6GK7343-2AH01-0XA0	CP 343-2 communications processors - Basic version for connection of SIMATIC S7-300 and ET 200M to AS-Interface - Configuration of the AS-i network using the SET key - Without front connector - Corresponds to AS-Interface specification V3.0 - Dimensions (W x H x D/mm): $40 \times 125 \times 120$	-	6GK7343-2AH01-0XAO		1	1 unit	42C

Accessories

Overview

CM AS-i Master ST for SIMATIC ET 200SP

More information

SIMATIC ET 200SP Manual Collection, see
https://support.industry.siemens.com/cs/ww/en/view/84133942
Diagnostics blocks with visualization, see
https://support.industry.siemens.com/cs/ww/en/view/109479103
AS-Interface block library for SIMATIC PCS 7 for easy connection of AS-Interface to PCS 7, see page 14/18 onwards
Released combinations of the AS-i modules for ET 200SP, see
https://support.industry.siemens.com/cs/ww/en/view/103624653
The CM AS-i Master ST communication module is designed for use in the SIMATIC ET 200SP distributed I/O system and has the following features:

- Connection of up to 62 AS-Interface slaves
- Supports all AS-Interface master functions according to the AS-Interface specification V3.0
- User-friendly configuration with graphic display of the AS-i line in TIA Portal V12 or higher, or via GSD in other systems
- Supply via AS-Interface cable
- Suitable for AS-i Power24V and for AS-Interface with 30 V voltage
- Integrated ground-fault monitoring for the AS-Interface cable
- Through connection to AS-Interface, the number of digital inputs and outputs available for the control system is greatly increased (max. 496 DI/496 DQ on the AS-Interface per CM AS-i Master ST).
- Integrated analog value processing

AS-i gateways with ET 200SP

An AS-i gateway or AS-i link enables access to the AS-Interface data via PROFINET or PROFIBUS.
With the CM AS-i Master ST module, flexible and powerful PROFINET/AS-i links or PROFIBUS/AS-i link solutions are set up. Depending on the requirements, even several AS-i masters can be plugged into one ET 200SP station, so that the setup can easily be extended from a single master to double masters or multiple masters.
The maximum number of modules is determined by the ET 200SP interface module (IM): up to 8 AS-i masters with PROFINET IM 155-6 PN Standard, up to 43 AS-i masters with IM 155-6 PN High Feature, or a single AS-i master with IM 155-6 PN Basic. For the connection to PROFIBUS, the IM 155-6DP HF interface module with up to 7 AS-i master modules is used.

Since in many plants an ET 200SP station with I/O, motor starter or other peripheral modules is provided, the AS-i master modules are simply plugged in without any additional effort. There are countless possible combinations.

An AS-i Safety gateway can also be implemented without any problems by adding the safety-oriented module F-CM AS-i Safety ST in the ET 200SP station. This greatly simplifies the cabling and connection of distributed EMERGENCY STOP pushbuttons and protective door monitoring systems to a fail-safe CPU. The AS-i Safety application is completely configured in TIA Portal/STEP 7.

The ET 200SP modules CM AS-i Master ST and F-CM AS-i Safety ST (see from page 2/36) can of course also be used directly on an ET 200SP CPU or F-CPU, so that an extremely compact SIMATIC control system with AS-i bus connection can be set up.

For further application possibilities, see the brochure
"The modular AS-i Master" at www.siemens.com/as-interface.
More information, see the SIMATIC ET 200SP Manual Collection.

Design

The CM AS-i Master ST module has an ET 200SP module enclosure with a width of 20 mm . A C0 type BaseUnit (BU) is required for use in the ET 200SP.
The communication module has LED indicators for diagnostics, operation, AS-i voltage and AS-i slave status and offers informative front-side module inscription for

- Plain-text marking of the module type and function class
- 2D matrix code (Article No. and serial number)
- Circuit diagram
- Color coding module type communication module, light gray
- Hardware and firmware version
- Supported BaseUnit type BU: C0

Function

The CM AS-i Master ST communication module supports all specified functions of the AS-Interface specification V3.0.
The input/output values of the digital AS-i slaves can be activated via the cyclic process image. The values of the analog AS-i slaves are accessible via the cyclic process image or via data record transfer.

If required, master calls can be performed with the command interface, e.g. read/write parameters, read/write configuration.
Changeover of the operating mode, automatic application of the slave configuration and the re-addressing of a connected AS-i slave can be implemented via the control panel of the CM AS-i Master ST in STEP 7.
For the implementation of modular machine concepts, the AS-i slaves can be activated or deactivated via the PLC program (option handling). The configuration of AS-i slaves can be modified while being executed, thus enabling variable machine setups and tool changing with integrated input/output modules during ongoing operation. AS-i input/output modules can be added to the system without deactivating the controller.
An existing AS-i installation can be read into the STEP 7 hardware configuration and adapted and documented in the project. Analog values are transmitted via the cyclic process image, the length of which is adjustable and extendable up to 288 bytes (depending on the interface module (IM) used).

Masters for SIMATIC ET 200 > CM AS-i Master ST for SIMATIC ET 200SP

Diagnostic information is accessed via automatic alarm indications, via the process image or data record reading in the user program or in the STEP 7 engineering system in a graphical overview matrix. The transmission quality of the AS-i network can also be read out. To avoid configuration errors, duplicate addresses can be detected on the AS-i network.
Configuration is possible with SIMATIC CPUs S7-300 up to S7-1500 and with a SINUMERIK 840D sl or other controller.
The online diagnostic status of the AS-i slaves can be displayed directly on the slaves in the network view in TIA Portal (for S7-1500 CPUs with firmware version V 2.0 or higher, from TIA Portal STEP 7 V14).
Notes on security:
In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.
For more information about the subject of Industrial Security, see www.siemens.com/industrialsecurity.

Configuration

The following software is required for configuration of the CM AS-i Master ST module:

- STEP 7 (TIA Portal) V12 or higher or V13 SP1 or higher (for firmware V1.1) or
- STEP 7 (classic) V5.5 SP3 HF4 or higher with HSP 2092¹) or HSP 2092 V3.0 (for firmware V1.1) or
- the GSD file of the ET 200SP with STEP 7 or another engineering tool

STEP 7 enables user-friendly configuration and diagnostics of the AS-i master and any connected slaves.
Alternatively, you can also apply the AS-Interface ACTUAL configuration as the TARGET configuration at the "touch of a button" via the control panel integrated in the TIA Portal or an optional expansion button. Configuration with the GSD file is possible only with the button.

The CM AS-i Master ST module occupies up to 288 input bytes and up to 288 output bytes in the I/O data of the ET 200SP station. The I/O assignment depends on the configuration in STEP 7.
Together with an ET 200SP CPU 1510SP/1512SP (firmware V1.8 or higher) or 1515SP PC, preprocessing of safe AS-i signals directly in the ET 200SP station and setting up of an independent AS-i station without a higher-level CPU are possible (TIA Portal V13 SP1 Update 4 and higher).

Configuration of an AS-Interface network with CM AS-i Master ST via the TIA Portal

1) For HSP 2092, see
https://support.industry.siemens.com/cs/ww/en/view/23183356.

For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see
https://support.industry.siemens.com/cs/ww/en/view/109479103.

CM AS-i Master ST diagnostics block

Industrial communication

AS-Interface
Masters
Masters for SIMATIC ET 200 > CM AS-i Master ST for SIMATIC ET 200SP

Application

Configuration examples of AS-Interface networks with CM AS-i Master ST for SIMATIC ET 200SP

Configuration of AS-Interface networks under a SIMATIC ET 200SP
Selection and ordering data

Accessories

155-6 PN High
 Feature

Max. 64 I/O modules,
ta per station
IM with a bus adapter slot
including server module and optional strain relief
(bus adapter must be ordered separately, see below)

3-port IM with two bus adapter slot
including server module and optional strain relief
PROFINET interface module IM 155-6 PN High Speed
PROFINET interface module M 155-6 PN High Speed
Max. 30 I/O modules
max. 4 byes
(bus adapter must be ordered separately, see below)

module

Max. 32 I/O modules,
max. 244 bytes I/O data per station

- Including server module and PROFIBUS plug

Bus adapters for PROFINET
For connection of the Ethernet cable to the

- Connection $2 \times$ RJ45 (supplied without RJ45 plug)
- Connection $2 \times$ FC (FastConnect) 6ES7193-6AF00-0AAO
For more bus adapters with fiber optic cable connection, see Industry Mall.

AS-Interface
Masters
Masters for SIMATIC ET 200 > F-CM AS-i Safety ST for SIMATIC ET 200SP

Overview

F-CM AS-i Safety ST for SIMATIC ET 200SP

More information

SIMATIC ET 200SP Manual Collection, see
https://support.industry.siemens.com/cs/ww/en/view/84133942
Diagnostics blocks with visualization, see
https://support.industry.siemens.com/cs/ww/en/view/109479103
Released combinations of the AS-i modules for ET 200SP, see
https://support.industry.siemens.com/cs/ww/en/view/103624653
The F-CM AS-i Safety ST fail-safe communication module supplements an AS-Interface network without additional wiring to produce a safety-related AS-i network
Important features:

- Fail-safe communication module for the ET 200SP
- 31 fail-safe input channels in the process image
- 16 fail-safe output channels in the process image
- Certified up to SIL 3 (IEC 62061), PL e (EN ISO 13849-1)
- Parameterization conforms with other fail-safe I/O modules of the ET 200SP
- The communication module supports PROFIsafe in PROFINET and PROFIBUS configurations. Can be used with fail-safe SIMATIC S7-300F/S7-400F CPUs and S7-1500F CPUs and also the fail-safe versions of the ET 200SP station with ET 200SP F-CPU 1510SP F / 1512SP F (firmware V1.8 or higher) or 1515SP PC F.
- For reading up to 31 fail-safe AS-i input slaves
- Two sensor inputs/signals for each fail-safe AS-i input slave
- Adjustable evaluation of sensor signals: two-channel or $2 \times$ single-channel
- Integrated discrepancy evaluation in the case of two-channel signals
- Integrated AND operation in the case of $2 \times$ single-channel signals
- Input delay can be parameterized
- Start-up test can be set
- Sequence monitoring can be activated
- For control of up to 16 fail-safe AS-i output circuit groups
- The output circuit groups are controlled independently of one another.
- One output circuit group can act on one or more actuators (e.g. to switch drives simultaneously).
- An actuator (e.g. a contactor) is interfaced via a fail-safe AS-i output module (e.g. safe SlimLine module S45F, Article No. 3RK1405-1SE15-0AA2, see page 2/26).
- Simple fault acknowledgment via the process image
- Simple module replacement thanks to automatic importing of the safety parameters from the coding element
- Comprehensive diagnostic options
- Can be plugged onto type C1 or type C0 BaseUnits (BU)
- Informative automatic alarm indications (firmware V1.0.1 or higher)
- Supply via AS-Interface voltage
- Eight LED indicators for diagnostics, operating state, fault indication and supply voltage
- Informative front-side module inscription
- Plain-text marking of the module type and function class
- 2D matrix code (Article No. and serial number)
- Circuit diagram
- Color coding module type communication module: Light gray
- Hardware and firmware version
- Supported BaseUnit type BU: C1, C0
- Optional labeling accessories
- Labeling strips
- Reference identification label

Design

The fail-safe F-CM AS-i Safety ST module has an ET 200SP module enclosure with a width of 20 mm .
One AS-i master according to the AS-i specification V3.0 and safe AS-i input slaves and/or safe AS-i output modules are needed for operation. The CM AS-i Master ST communication module (Article No. 3RK7137-6SA00-OBC1) is recommended as the AS-i master for the ET 200SP, see page 2/32 onwards.
Simple combination of the CM AS-i Master ST and F-CM AS-i Safety ST modules in one ET 200SP station results in a powerful, safety-oriented network transition between PROFINET (or PROFIBUS) and AS-Interface, which can be expanded further in a modular fashion.

Combination of an ET 200SP interface module, CM AS-i Master ST and F-CM AS-i Safety ST
With the digital and analog I/O modules of the ET 200SP, additional local inputs and outputs can be realized so as to ensure that the modular AS-i router complies precisely with customer requirements. Expansion variants for almost every application are possible thanks to the selection of standard and fail-safe I/O modules.

Besides the single AS-i master, double, triple or generally multiple masters can be realized with or without fail-safe functionality.

Supported BaseUnits

With the combination of the CM AS-i Master ST and F-CM AS-i Safety ST modules, the CM module is plugged onto a light type CO BaseUnit and, immediately to the right of it, the F -CM module is plugged onto a dark type C1 BaseUnit. The AS-i cable is connected only on the light BaseUnit of the CM module.

Notes on security:
In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.

For more information about the subject of Industrial Security, see www.siemens.com/industrialsecurity.

Configuration

The following software is required for configuration of the F-CM AS-i Safety ST module:

- STEP 7 (TIA Portal) V13 and higher with HSP 0070¹) and Safety Advanced.
STEP 7 V 13 SP1 or higher is required for connection to the S7-1500F. When configuring with STEP 7 V13 SP1, the latest version of HSP 0070 V 2.0 (or higher) is an essential prerequisite.
STEP 7 Safety V13 SP1 Update 4 and HSP 0070 V3.0 (or higher) are needed for configuration of the F-CM AS-i Safety ST module in an ET 200SP station with ET 200SP F-CPU 1510SP F/1512SP F (firmware V1.8 or higher) or 1515SP PC F.
or
- STEP 7 (classic) V5.5 SP3 HF4 or higher with HSP 2093²) and Distributed Safety V5.4 SP5 or F-Configuration Pack SP11 (or higher) or SIMATIC S7 F/FH systems
Configuration and programming are done entirely in the STEP 7 user interface. No additional configuration software is needed for commissioning.
Data management - together with all other configuration data of the SIMATIC - is realized completely in the $S 7$ project.

The input and output channels are assigned to the process image automatically and manual linking via configuration blocks is not necessary.
If the F-CM AS-i Safety ST module is replaced, all necessary settings are automatically imported into the new module.
The F-CM AS-i Safety ST module occupies 16 input bytes and 8 output bytes in the I/O data of the ET 200SP station.
For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see
https://support.industry.siemens.com/cs/ww/en/view/109479103.

Diagnostics block for F-CM AS-i Safety ST

1) HSP 0070, see
https://support.industry.siemens.com/cs/ww/en/view/72341852.
2) HSP 2093, see
https://support.industry.siemens.com/cs/ww/en/view/23183356.

Application

Thanks to use of the fail-safe module in the ET 200SP, it is possible to fulfill the safety-related application requirements in a manner that is integrated in the overall automation solution.
The safety functions required for fail-safe operation are integrated in the modules. Communication with the fail-safe SIMATIC S7 CPUs is realized via PROFIsafe.
The safety application is programmed in the SIMATIC S7 F-CPU with Distributed Safety/S7 F/FH Systems/Safety Advanced. The fail-safe input signals of the ASIsafe slave modules are read via the AS-i bus line and are combined with any chosen further signals in the fail-safe program.

The fail-safe output signals can be output via safe SIMATIC output modules or also directly via AS-i - with the help of safe AS-i output modules, e.g. safe SlimLine S45F modules, Article No. 3RK1405-1SE15-0AA2 (see page 2/26). No special functions are required for this in the program.
Operation with SINUMERIK 840D sl is possible with SINUMERIK software version V4.7 SP2 HF1 or higher.
Together with an ET 200SP station with ET 200SP F-CPU 1510SP F/1512SP F (firmware V1.8 and higher) or 1515SP PC F, pre-processing of safe AS-i signals directly in the ET 200SP station is possible, as well as the configuration of an autonomous AS-i Safety station without a higher-level CPU.

Industrial communication

AS-Interface
Masters

Masters for SIMATIC ET 200 > F-CM AS-i Safety ST for SIMATIC ET 200SP

Configuration examples of AS-Interface networks with CM AS-i Master ST and F-CM AS-i Safety ST for SIMATIC ET 200SP

AS-Interface configuration comprising an ET 200SP station with CM AS-i Master ST and F-CM AS-i Safety ST modules

Selection and ordering data

Accessories

	Version	SD	Spring-loaded terminals	$\begin{aligned} & \infty \\ & \square \end{aligned}$	PU (UNIT, SET, M)	PS*	PG
		d	Article No.	Price per PU			
11	BaseUnit BU20-P6+A2+4B - BaseUnit (dark), BU type C1 - Suitable for the F-CM AS-i Safety ST fail-safe communication module - Continuation of an AS-i network, connection with the AS-i voltage of the left-hand module	1	6ES7193-6BP20-0BC1		1	1 unit	255
	Coding element type H (spare part) - For the ET 200SP modules F-CM AS-i Safety ST and CM 4xIO-Link - Packing unit 5 items	1	6ES7193-6EH00-1AAO		1	5 units	256

More accessories, see page 2/35.

Overview

DP/AS-Interface Link 20E

More information

Manual, see
https://support.industry.siemens.com/cs/ww/en/view/5281638

DP/AS-Interface Link 20E connects PROFIBUS DP to AS-Interface and has the following features:

- PROFIBUS DP slave and AS-Interface master
- Up to 62 AS-Interface slaves, each with four digital inputs and four digital outputs as well as analog slaves can be connected
- Integrated analog value transmission
- Supports all AS-Interface master functions according to the AS-Interface specification V3.0
- Supply from AS-Interface cable; hence no additional power supply required
- Suitable for AS-i Power24V (from product version 2 / firmware version 3.1) and for AS-Interface with 30 V voltage
- Supports uploading of the AS-Interface configuration in STEP 7 V5.2 and higher

Routers

High-performance routers between PROFINET and AS-Interface and between PROFIBUS and AS-Interface can be set up by combining the CM AS-i Master ST and F-CM AS-i Safety ST modules in an ET 200SP station (for safety-related applications), see pages 2/32 and 2/36.

Design

- Compact plastic enclosure in degree of protection IP20 for standard rail mounting
- LEDs in the front panel for indicating the operating state and functional readiness of all connected slaves
- Setting of PROFIBUS DP address is possible by pressing a button
- LED indication of the PROFIBUS DP slave address, PROFIBUS DP bus faults and diagnostics
- Two pushbuttons for switching over the operating state and for adopting the existing ACTUAL configuration as the TARGET configuration

Functionality

Communication

The DP/AS-Interface Link 20E enables a DP master to access all the slaves of an AS-Interface network.
The DP/AS-Interface Link 20E occupies a standard 32 bytes of input data and 32 bytes of output data in which the digital I/O data of the connected AS-Interface slaves (standard and A/B addressing) of an AS-i line is stored.

The size of the input/output image can be compressed so that only the actually required I/O address area is occupied in the system of the PROFIBUS DP master.
The analog I/O data can be accessed with the S 7 system functions for read/write data records.

Configuration

The DP/AS-Interface Link 20E is configured as follows:

- With STEP 7 (TIA Portal) from V12 or STEP 7 (classic) from V5.1 SP2:
In the case of STEP 7 configuration, the AS-Interface configuration can be uploaded from STEP 7 V5.2. Furthermore, AS-Interface slaves from Siemens can also be conveniently configured in HW Config (slave selection dialog).
- By adopting the ACTUAL configuration of the AS-Interface by using the SET pushbutton on the front panel.
- Alternatively, DP/AS-Interface Link 20E can be integrated by means of the PROFIBUS GSD file in the engineering tool (e.g. for STEP 7 V5.1 and lower or for non-Siemens engineering tools).

Benefits

- Reduction of installation costs because the power is supplied entirely via the AS-Interface cable, which means that no additional power supply is required
- Short startup times thanks to easy configuration at the touch of a button
- The LED indicators help reduce downtime and service times if a slave fails
- Quick and easy commissioning by reading the AS-Interface configuration
- For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see
https://support.industry.siemens.com/cs/ww/en/view/61892138.

Industrial communication

AS-Interface
Routers

DP/AS-Interface Link 20E

Application

The DP/AS-Interface Link 20E is a PROFIBUS DP slave (according to IEC 61158/IEC 61784) and an AS-Interface master (according to IEC/EN 62026-2). It enables the AS-Interface to be operated on PROFIBUS DP.

Up to 248 DI / 248 DQ can be operated via the DP/AS-Interface Link 20E using 62 A/B slaves with 4 DI / 4 DQ each.

PROFIBUS DP masters (DP-V0) can exchange digital I/O data cyclically with the AS-Interface.
PROFIBUS DP masters with acyclic services (DP-V1) are additionally able to exchange analog I/O data and initiate AS-Interface master calls (e.g. reading/writing the AS-i configuration during normal operation).

Transition from PROFIBUS DP to AS-Interface using DP/AS-Interface Link 20E

Selection and ordering data

	Version	SD d	Article No.	Price per PU	(UNIT, SET, M)	PS*	PG
DP/AS-Interface Link 20E							
	Router between PROFIBUS DP and AS-Interface in degree of protection IP20; including screw terminals for connection of the AS-Interface cable; corresponds to AS-Interface specification V3.0; dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D} / \mathrm{mm}$): $90 \times 80 \times 60$ (dimensions without fixing lugs)	-	Screw terminals 6GK1415-2AA10	0	1	1 unit	42C

Accessories

Version	SD	Article No.	Price per PU		PS*	PG
	d					
PROFIBUS FC standard cable GP	3	6XV1830-0EH10		1	1 M	5K1
FastConnect standard type with special design for fast installation, 2-core, shielded						
PROFIBUS FastConnect bus connector						
With insulation displacement connection, max. transmission rate 12 Mbps , activatable terminating resistor integrated						
- RS 485 bus connector with 90° cable feeder						
- Without PG connection socket	1	6ES7972-0BA52-0XAO		1	1 unit	250
- With PG connection socket	1	6ES7972-0BB52-0XAO		1	1 unit	250
- RS 485 bus connector with diagonal cable outlet (35°)						
- Without PG connection socket	1	6ES7972-0BA61-0XAO		1	1 unit	250
- With PG connection socket	1	6ES7972-0BB61-0XAO		1	1 unit	250
PROFIBUS FastConnect stripping tool	1	6GK1905-6AA00		1	1 unit	5K2
Preset stripping tool for speedy stripping of PROFIBUS FastConnect bus cables						

AS-Interface
Slaves

I/O modules for use in the field, high degree of protection > Digital I/O modules, IP67 - Introduction

Overview

K60

K45

K20
Three coordinated series of AS-Interface compact modules with digital and analog compact modules and a high degree of protection are available for use in the field:

- Digital modules with a high degree of protection
- Series K60, see pages 2/44 and 2/46
- Series K45, see page 2/49
- Series K20, see page 2/50
- Analog modules with a high degree of protection
- Series K60, see page 2/53

All compact modules are characterized by particularly simple handling. The K60 and K45 modules are mounted with a mounting plate. The mounting plate is used to mount the AS-Interface flat cables and enables mounting on a wall or standard mounting rail.
The particularly narrow K20 modules are directly mounted without a mounting plate and connected to the AS-Interface using a round cable.

Connection types

For flexible connection of different sensors and actuators, the following PIN assignments are available on the I/O modules with M12 sockets:

Standard assignment

With the standard assignment, one sensor/actuator is connected per M12 socket. In this case the signal for the outputs is acquired at PIN4 while the signal for the inputs is acquired at PIN4 and PIN2. As the result, sensors can be connected directly to PIN2 and PIN4.

Y-assignment

With the Y -assignment, two sensors or two actuators can be connected to one M12 socket. In this case, both PIN4 and PIN2 are provided for one sensor signal and one actuator signal on each M12 socket.

Y-II assignment

The Y-II assignment offers the following options:

- Individual connection of a sensor/actuator to one M12 socket
- Connection of two sensors/actuators to one M12 socket as follows:
- The signal of the first sensor/actuator is connected to PIN4 of the first socket.
- The signal of the second sensor/actuator is connected to PIN2 of the first socket and to PIN4 of the second socket. In this case, the second socket is not required and is closed with a sealing cap.

Overview of digital compact modules

The following table provides an overview of the important features of the digital compact modules.

Version	K60	K45	K20
8 inputs/2 outputs	\checkmark	--	--
8 inputs	\checkmark	\checkmark	--
4 inputs/4 outputs	\checkmark	\checkmark	\checkmark
4 inputs/3 outputs	\checkmark	--	--
4 inputs/2 outputs	\checkmark	--	--
4 inputs	\checkmark	\checkmark	\checkmark
2 inputs/2 outputs	--	\checkmark	\checkmark
4 outputs	\checkmark	\checkmark	\checkmark
3 outputs	--	\checkmark	--
AS-Interface connection	Flat cable / round cable	Flat cable	Round cable
I/O connection method	M12	M12/M8	M12/M8
Pin assignment	Standard/Y-1I/Y	Standard/Y	Standard/Y
Degree of protection	IP65/IP67/IP68/ IP69 (IP69K)	IP65/IP67	IP65/IP67
Addressing type A / B address	\checkmark	\checkmark	\checkmark

\checkmark Available
-- Not available
Safety modules for AS-Interface, see page 2/26.

Overview

K60

The K60 digital AS-Interface compact modules are characterized by optimized handling characteristics and user-friendliness. They permit the mounting times and startup times of AS-Interface to be reduced by up to 40%.

Mounting and connection of the AS-Interface shaped cables

Assembly of the K60 modules is performed with a mounting plate which accommodates the AS-Interface shaped cables. Two different mounting plates are offered for

- Wall mounting
- Standard rail mounting

The mounting plate and the compact module are joined together by means of a screw, with simultaneous contacting of the AS-Interface cable by the service-proven insulation piercing method.

Addressing and connection of the sensors/actuators

Addressing of the K60 modules is performed using an addressing socket integrated in the compact module. The addresses can also be assigned after installation.

K60 modules with a maximum of four digital inputs and outputs
These compact modules contain the M12 standard connections for inputs and outputs. Using M12 standard plugs, a maximum of four sensors and four actuators can be connected to the compact module.
K60 compact modules with a maximum of eight digital inputs
These modules have eight digital inputs for connection through M12 plugs.
The module requires two AS-Interface addresses for processing all eight inputs. The addressing can thus be performed through a double addressing socket integrated in the module.

K60 data couplers

An AS-Interface data coupler has been added to the K60 compact module range. Integrated in this module are two AS-i slaves which are connected to two different AS-i networks. Each of the two integrated slaves has four virtual inputs and four virtual outputs. The bidirectional data transmission of four data bits between two AS-i networks is thus possible in a simple and cost-effective manner. The data coupler needs its own address in each AS-i network. The data coupler is supplied with power directly from the AS-i cable.
Each AS-i network works with a different cycle time depending on the number of stations. Hence two AS-i networks are not necessarily synchronous. For this reason, the AS-i data coupler can be used to transmit only standard data and no safety data.

Industrial communication

AS-Interface
Slaves

I/O modules for use in the field, high degree of protection > Digital I/O modules, IP67 - K60

Selection and ordering data

Version	SD Article No.	Price PU (UNIT, per PU PET, M)	PG

- PNP transistor
- Width 60 mm
- Connection method: M12
- Modules supplied without mounting plate

Type	Current carrying capacity of outputs	Slave addressing type	Pin assignment	Sensor power supply via					
8 inputs/ 2 outputs $^{1)}$	2 A	A/B	Special	AS-i	2	3RK2400-1HQ00-0AA3	1	1 unit	42C
8 inputs ${ }^{1)}$	--	Standard	Y-II	AS-i	-	3RK1200-0DQ00-0AA3	1	1 unit	42C
	--	A/B	Y-II	AS-i	\checkmark	3RK2200-0DQ00-0AA3	1	1 unit	42 C
	--	A/B	Y-II	$U_{\text {aux }}$	2	3RK2200-1DQ00-1AA3	1	1 unit	42 C
4 inputs/ 4 outputs	2 A	Standard	Y-II	AS-i	-	3RK1400-1DQ00-0AA3	1	1 unit	42 C
	2 A	Standard	Standard	AS-i	-	3RK1400-1CQ00-0AA3	1	1 unit	42 C
	1 A	Standard	Y-II	AS-i	2	3RK1400-1DQ01-0AA3	1	1 unit	42 C
	1 A	Standard	Standard	AS-i	-	3RK1400-1DQ03-0AA3	1	1 unit	42 C
	2 A	A/B (spec. V3.0)	Y-II	AS-i	\checkmark	3RK2400-1DQ00-0AA3	1	1 unit	42 C
	2 A	A/B (spec. V3.0)	Y-II	$U_{\text {aux }}$	2	3RK2400-1DQ00-1AA3	1	1 unit	42 C
4 inputs/ 3 outputs	2 A	A/B	Y-II	AS-i	-	3RK2400-1FQ03-0AA3	1	1 unit	42 C
4 inputs/ 2 outputs	2 A	Standard	Y-II	AS-i	-	3RK1400-1MQ00-0AA3	1	1 unit	42C
4 inputs	--	Standard	Y-II	AS-i	-	3RK1200-0CQ00-0AA3	1	1 unit	42 C
	--	A/B	Y-II	AS-i	2	3RK2200-0CQ00-0AA3	1	1 unit	42 C
2×2 inputs/ 2×2 outputs	1 A	Standard	Y	AS-i	15	3RK1400-1DQ02-0AA3	1	1 unit	42 C
4 outputs	2 A	Standard	Y-II	--	\checkmark	3RK1100-1CQ00-0AA3	1	1 unit	420
	2 A	A/B (spec. V3.0)	Y-II	--	2	3RK2100-1CQ00-0AA3	1	1 unit	420

Digital I/O modules, IP67-K60 data couplers
Modules supplied without mounting plate

Type	Current carrying capacity of outputs	Slave addressing type	Pin assignment	Sensor power supply via					
Data coupler 4 inputs/ 4 outputs (virtual)	--	Standard	--	--	10	3RK1408-8SQ00-0AA3	1	1 unit	42C

Safety modules for AS-Interface, see page 2/26 onwards.

Accessories

	Version	$\begin{aligned} & \text { SD } \\ & \text { d } \end{aligned}$	Article No.	Price per PU	PU (UNIT, SET, M)	PS*	PG
	K60 mounting plates Suitable for all K60 compact modules - Wall mounting - Standard rail mounting		3RK1901-0CA00 3RK1901-0CB01			1 unit 1 unit	$\begin{aligned} & 42 \mathrm{C} \\ & 42 \mathrm{C} \end{aligned}$
	AS-Interface sealing caps M12 For free M12 sockets	-	3RK1901-1KA00		100	10 units	42C
3RK1902-0AR00	Sealing sets - For K60 mounting plate and standard distributor - Cannot be used for K45 mounting plate - One set contains one straight and one shaped seal	30	3RK1902-0AR00		100	5 units	42D

Overview

Operation in particularly harsh environments

K60R module in degree of protection IP68/IP69 (IP69K)
Modules with degree of protection IP67 cannot be used in areas exposed to permanently high levels of humidity, in applications with drilling emulsions and cutting oils or when cleaning with high-pressure cleaners. The answer for these applications is provided by the expansion of the K60 compact modules with the K60R module with degree of protection IP68/IP69 (IP69K).
The K60R modules are connected instead of the AS-Interface flat cable using a round cable with M12 cable box. The AS-Interface bus cable and the 24 V DC auxiliary power supply are routed in this case in a shared round cable.
Degree of protection IP68 permits many new applications that were impossible with the former field modules with degree of protection IP67. In applications such as filling plants or machine tools, the K60R with degree of protection IP68 enables the module to be used directly in zones exposed to permanent loading by humidity. It is thus possible to make even more rigorous savings in wiring with AS-Interface. For more information on IP68 test conditions, see "IP68/IP69 (IP69K) tests", page 2/46.

Cleaning with high-pressure cleaners, such as is regularly required in the food and beverages industry for instance, is possible without difficulty (IP69).
In applications with cable carriers, many users rely on placing the AS-Interface bus cable in a round cable. With the K60R module, a round cable connection enables direct connection to a round cable. No adapter is required.

Mounting

The same mounting plates are used as for the K60 modules. Instead of using flat cables, the K60R is connected using a 4-pole round cable with an M12 connection. With the K60R the mounting plate thus serves only as a fixture and ground terminal.

Addressing

Addressing is performed using the same socket as for the bus connection. Connecting the module to the addressing unit takes place over a 3-pole standard M12 cable.
When the mounting is finished, the module is connected with the addressing cable to the addressing unit and addressed. The addressing cable is then removed and the module connected to the bus cable.

Connection

K60R connection options

In the IP67 environment, the service-proven standard components are connected using flat cables. Spur lines are laid into the IP68 environment by means of an AS-Interface M12 feeder (3RK1901-2NR..). The module is connected with a round cable to an M12 cable box. For this purpose, the module has an M12 bus connection instead of the former addressing socket. The AS-Interface bus cable and the 24 V DC auxiliary voltage are routed together in a 4-pole round cable. There must be no ground conductor in this round cable. Connection to ground is made through the mounting plate.

In the IP68 environment, only cables with extruded M12 plugs may be used.
Please note the following conditions:

- The configuration guidelines for AS-Interface apply. For all M12 connecting cables, the maximum permissible current is limited to 4 A . The cross-section of these cables is just $0.34 \mathrm{~mm}^{2}$. For connection of the K60R modules, the aforementioned M12 connecting cables can be used for the spur lines. The voltage drop caused by the ohmic resistance (approx. $0.11 \Omega / \mathrm{m}$) must be taken into account.
- For round cable connections with shared AS-i and $U_{\text {aux }}$ in a single cable, the following maximum lengths apply:
- Per spur line from feeder to module: max. 5 m
- Total of all round cable segments in an AS-Interface network: max. 20 m

Industrial communication

AS-Interface
Slaves

I/O modules for use in the field, high degree of protection > Digital I/O modules, IP68/IP69 - K60R

IP68/IP69 (IP69K) tests

K60R modules were tested with the following tests:

- Stricter test than IP67: 90 min at 1.8 m depth of water (IP67: 30 min at 1 m depth of water)
- Salt water test: Five months in salt water, 20 cm deep, at room temperature
- Test with particularly creepable oil: Five months completely under oil at room temperature
- Test with drilling emulsion: Five months at room temperature (components of the drilling emulsion: Anionic and non-ionic emulsifiers, paraffinic low-aromatic mineral oil, boric acid alkanolamines, corrosion inhibitors, oil content 40\%)
- Test in oil bath (Excellence 416 oil) with alternating oil bath temperature: 130 cycles of 15 to $55^{\circ} \mathrm{C}$, two months
- Cleaning with a high-pressure cleaner according to IP69 (IP69K): 80 to 100 bar, 10 to 15 cm distance, time per side $>30 \mathrm{~s}$, water temperature $80^{\circ} \mathrm{C}$

To simulate requirements as realistically as possible, the modules were artificially aged prior to the tests by 15 temperature cycles of $-25 /+85^{\circ} \mathrm{C}$. During the test, the modules were connected to 3RX1 connecting cables. Unassigned connections were closed with 3RK1901-1KA00 sealing caps.
Note:
Sealing caps and M12 connections must be tightened with the correct torque.

Selection and ordering data

Accessories

AS-Interface
Slaves
I/O modules for use in the field, high degree of protection > Digital I/O modules, IP67 - K45

Overview

Compact modules K45
The K45 series of compact modules supplements the large K60 compact modules which have a proven track record in industry. They are the logical consequence for rounding off the bottom end of the existing product range.

The acclaimed advantages of the existing K60 compact modules are fully emulated by the K45 modules. The K45 modules have a substantially smaller basic area and installation depth, however.

Yet in spite of these small dimensions all the modules have large labels and an integrated addressing socket

Two mounting plates are offered for the K45 compact modules:

- Mounting plate for wall mounting

This has a hole pattern that is identical to that of the K60 compact modules. This means that K60 compact modules can be mounted together with K45 modules in an aligned arrangement. The shaped cables can be inserted in the recesses of the mounting plates where they cause no hindrance.

- Mounting plate for standard rail mounting

Connection of the AS-Interface shaped cables

The mounting plate and the compact module are joined together by means of a screw, with simultaneous contacting of the AS-Interface cable by the service-proven insulation piercing method.
Now, mounting the AS-Interface shaped cables is in fact easier than ever. The yellow and black AS-Interface shaped cable can be inserted into the mounting plates from the left or right regardless of the position of the coding lug. The correct polarity of the applied voltages is thus guaranteed.

Addressing and connection of the sensors/actuators

Addressing of the K45 compact modules is performed using an addressing socket integrated in the module. The addresses can be assigned even when mounted.
K45 modules with a maximum of four digital inputs and outputs
These compact modules contain up to four M12 standard connections or M8 standard connections for inputs and outputs. Using M12 or M8 standard plugs, a maximum of four sensors and four actuators can be connected to the compact module. Depending on the module, the sockets can be assigned in duplicate.
Pin assignment: Y - i.e. via a socket, two sensors or one sensor/one actuator are connected.
K45 modules with a maximum of eight digital inputs
These modules have eight digital inputs for connection through M12 plugs. The sockets have duplicate assignments. Pin assignment: Y - i.e. via a socket, two sensors or one sensor/one actuator are connected.
The module requires two AS-Interface addresses for processing all eight inputs. The addresses can be assigned through a double addressing socket integrated in the module.

Selection and ordering data

Accessories

AS-Interface
Slaves

I/O modules for use in the field, high degree of protection > Digital I/O modules, IP67 - K20

Overview

Digital I/O modules, IP67-K20
The K20 compact module series rounds off the AS-Interface compact modules with a particularly slim design and only $20-\mathrm{mm}$ width. Thanks to its extremely compact dimensions, these modules are particularly suited for handling machine applications in the field of production engineering where modules need to be arranged in the smallest of spaces.

Robotics is yet another application area. The K20 modules are connected to the AS-Interface with a round cable with M12 cable box instead of with the AS-Interface flat cable. The AS-Interface bus cable and the 24 V DC auxiliary energy are routed in this case in a shared round cable. This enables extremely compact installation

The flexibility of the round cable means that it can also be used on moving machine parts without any problems. The K20 modules are also ideal for such applications as their non-encapsulated design makes them particularly light in weight.
In applications with cable carriers, many users rely on placing the AS-Interface bus cable in a round cable. In this case, the K20 modules support direct connection to the round cable. No flat to round cable adapter is required.

The K20 compact module range includes standard AS-Interface modules, as well as an ASIsafe version for the connection of safety-related sensors, such as EMERGENCY STOP pushbuttons or protective door monitoring.
For particularly space-saving dimensions, the sensors and actuators are connected over M8 plug-in connectors. Alternatively, M12 connectors with Y -assignment can be used.

Selection and ordering data

Safety modules for AS-Interface, see page 2/26 onwards.

Accessories

	Version				SD	Article No.	Price per PU		PS*	PG
					d					
	AS-Interface sealing caps - For free M12 sockets - For free M8 sockets				2	3RK1901-1KA00 3RK1901-1PN00		100 100	10 units 10 units	$\begin{aligned} & 42 \mathrm{C} \\ & 42 \mathrm{C} \end{aligned}$
	AS-Interface compact distributors, for AS-Interface flat cable Current carrying capacity up to 8 A				2	3RK1901-2NN10		1	1 unit	42C
	AS-Interface M12 feeders - Degree of protection IP67 - Current carrying capacity up to 2 A									
3RX9801-0AA00 3RK1901-2NR21	For flat cable	For	Cable length	Cable end in feeder						
	AS-i	M12 socket	--	Available	-	3RX9801-0AA00		1	1 unit	42C
	AS-Interface M12 feeders - Degree of protection IP67/IP68/IP69 (IP69K) - Current carrying capacity up to 4 A									
	For flat cable	For	Cable length	Cable end in feeder						
	$\begin{aligned} & \text { AS-i } \\ & \text { AS-i } \\ & \text { AS-i } \end{aligned}$	M12 socket M12 cable box M12 cable box	$\begin{aligned} & -- \\ & 1 \mathrm{~m} \\ & 2 \mathrm{~m} \end{aligned}$	Not available Not available Not available	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	3RK1901-2NR10 3RK1901-2NR11 3RK1901-2NR12		1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 42 \mathrm{C} \\ & 42 \mathrm{C} \\ & 42 \mathrm{C} \end{aligned}$
	$\begin{aligned} & \text { AS-i } / U_{\text {aux }} \\ & \text { AS-i } / U_{\text {aux }} \\ & \text { AS-i } / U_{\text {aux }} \end{aligned}$	M12 socket M12 cable box M12 cable box	1 m 2 m	Not available Not available Not available	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	3RK1901-2NR20 3RK1901-2NR21 3RK1901-2NR22		1	1 unit 1 unit 1 unit	$\begin{aligned} & 42 \mathrm{C} \\ & 42 \mathrm{C} \\ & 42 \mathrm{C} \end{aligned}$
- $\%$	AS-Interface M12 feeders, 4-fold Current carrying capacity up to 4 A									
\%	For flat cable	For	Cable length	Cable end in feeder						
	AS-i/ $U_{\text {aux }}$	4-fold M12 socket, delivery includes mounting plate (for wall and standard rail mounting)	--	Not available	2	3RK1901-1NR04		1	1 unit	42C
	M12 Y-shaped coupler plugs For connection of two sensors to one M12 socket with Y-assignment				1	6ES7194-1KA01-0XA0		1	1 unit	250
3RK1902-4PB15-3AA0	M12 connecting cables -3-pole - For addressing AS-i slaves with M12 bus connection - Cable length 1.5 m				2	3RK1902-4PB15-3AA0		1	1 unit	42D

Overview

K60 analog compact module

More information

Manual for AS-Interface analog modules, see
https://support.industry.siemens.com/cs/ww/en/view/7643815
AS-Interface analog modules from the K60 compact series detect or issue analog signals locally. These modules are linked to the higher-level controller through an AS-Interface master according to specification V2.1 or specification V3.0.
The analog modules are divided into the following groups:

- Input modules for
- Current measurement
- Voltage measurement
- Resistance/thermal resistance measurement
- Output modules for
- Current actuators
- Voltage actuators

The input modules according to profile 7.3/7.4 are available with two or four input channels. It is possible in addition to convert the two-channel module to using only one input channel, thus enabling very short times before the analog value is available. The conversion is effected by means of a jumper plug at socket 3 . The transmission times achieved with analog modules according to profile 7.A. 9 are twice as fast as those achieved with profile 7.3/7.4. Operation is adjustable in this case, e.g. it is possible to choose with the ID1 code whether the module is operated with one or two channels.
The output modules are configured as two-channel modules as standard.

The input and output channels are electrically separated from the AS-Interface network. If sensors with a higher power requirement are to be connected, more power can be supplied through the auxiliary voltage as an alternative to the internal supply.
In the Manual the modules are presented in great detail along with their technical specifications and in-depth notes on operation. Sample function blocks round off the manual, see "More information" above.

Benefits

- Analog modules are just as easy to integrate in AS-Interface as digital modules
- Analog values can be easily detected and issued locally
- Preprocessing of the analog value transfer in the master enables rapid evaluation of the analog values
- Up to four values can be detected using one analog module
- Faster transmission and conversion of analog values thanks to the new option for switching to single-channel operation
In addition, specification V3.0 now also offers:
- A/B technology, now also with analog modules
- On average, double fast transmission times (only 3 or 4 cycles, depending on the resolution selected)
- Variable adjustable mode: 12-bit or 14 -bit resolution, single-channel or two-channel, selectable via the ID1 code

Selection and ordering data

	Version			SD	Article No.	Price per PU		PS*	PG
				d					
3RK1207-1BQ44-0AA3	Analog I/O modules, IP67-K60, analog profile 7.3 - Slave addressing type: Standard address - Width 60 mm - Modules supplied without mounting plate								
	Inputs	Type	Measuring range						
	1 or 2 inputs (selectable using jumper plug at socket 3)	Current	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \text { or } \\ & \pm 20 \mathrm{~mA} \\ & \text { (selectable) }^{1} \end{aligned}$	2	3RK1207-1BQ40-0AA3		1	1 unit	42C
		Voltage	$\begin{aligned} & \pm 10 \mathrm{~V} \text { or } \\ & 1 \ldots 5 \mathrm{~V} \\ & \text { (selectable) } \end{aligned}$	-	3RK1207-2BQ40-0AA3		1	1 unit	42C
		Thermal resistance	Pt100 or Ni100 or $0 . . .600 \Omega$ $\left(\right.$ selectable) ${ }^{1)}$	2	3RK1207-3BQ40-0AA3		1	1 unit	42C
	4 inputs	Current	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \text { or } \\ & \pm 20 \mathrm{~mA} \\ & \text { (selectable) } \end{aligned}$	-	3RK1207-1BQ44-0AA3		1	1 unit	42C
		Voltage	$\begin{aligned} & \pm 10 \mathrm{~V} \text { or } \\ & 1 \ldots 5 \mathrm{~V} \\ & \text { (selectable) } \end{aligned}$	-	3RK1207-2BQ44-0AA3		1	1 unit	42C
		Thermal resistance	Pt100 or Ni100 or $0 . . .600 \Omega$ (selectable)	2	3RK1207-3BQ44-0AA3		1	1 unit	42C
	Outputs	Type	Output range						
	2 outputs	Current for 2-wire actuators	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \text { or } \\ & \pm 20 \mathrm{~mA} \text { or } \\ & 0 \ldots 20 \mathrm{~mA} \\ & (\text { selectable })^{1} \end{aligned}$	2	3RK1107-1BQ40-0AA3		1	1 unit	42C
		Voltage for 2-wire actuators	$\begin{aligned} & \pm 10 \mathrm{~V} \text { or } \\ & 0 \ldots 10 \mathrm{~V} \text { or } \\ & 1 \ldots 5 \mathrm{~V} \\ & \text { (selectable) } \end{aligned}$	2	3RK1107-2BQ40-0AA3		1	1 unit	42C
	- Slave addressing type: A/B (spec. V3.0) - Width 60 mm - Modules supplied without mounting plate								
	Inputs	Type	Measuring range						
	1 or 2 inputs (variably adjustable)	Current	$\begin{aligned} & 4 \ldots 20 \mathrm{~mA} \text { or } \\ & \pm 20 \mathrm{~mA} \\ & \text { (selectable) } \end{aligned}$	2	3RK2207-1BQ50-0AA3		1	1 unit	42C
3RK2207-2BQ50-0AA3		Voltage	$\begin{aligned} & \pm 10 \mathrm{~V} \text { or } \\ & 1 \ldots 5 \mathrm{~V} \\ & \text { (selectable) } \end{aligned}$	2	3RK2207-2BQ50-0AA3		1	1 unit	42C

1) Some modules are available in the extended temperature range (from -25 to $70^{\circ} \mathrm{C}$) and for use in difficult environmental conditions (coated according to environment standard IEC 60721).

Description

SIPLUS AS-Interface 2AA, IP67 SIPLUS AS-Interface 2AI, IP67 SIPLUS AS-Interface 2AI, IP67

SIPLUS article number

 6AG1107-1BQ40-7AA3 6AG1207-1BQ40-7AA3 6AG1207-3BQ40-7AA3
Corresponds to module

3RK1107-1BQ40-0AA3 3RK1207-1BQ40-0AA3 3RK1207-3BQ40-0AA3

[^0]
Industrial communication

AS-Interface
Slaves
I/O modules for use in the field, high degree of protection > Analog I/O modules, IP67 - K60

Accessories

Overview

SC17.5F, SC17.5 and SC22.5 SlimLine Compact modules

F90 module

Flat module

For AS-Interface applications inside control cabinets, there are various module series for the most diverse requirements:

- SlimLine Compact - particularly slim design ideal for spacesaving use in the control cabinet
- F90 module - particularly flat design for flat control boxes
- Flat module - special design for integration into customerspecific solutions
The existing SlimLine series of modules S22.5 and S45 are being replaced by the innovative new devices in the SlimLine Compact SC17.5, SC17.5F and SC22.5 series. The previous SlimLine modules are still available as replacements for existing systems.

Available versions

The following table provides an overview of the key features of the different series of control cabinet modules.

Feature	SlimLine Compact	F90 module	Flat module
Digital I/O	\checkmark	\checkmark	\checkmark
Analog I/O	\checkmark	--	--
Safe inputs	\checkmark	--	--
Relay outputs	\checkmark	--	--
Addressing method A/B address	\checkmark	--	--
Mounting onto TH 35 standard mounting rail according to IEC 60715	\checkmark	-	--
Wall mounting using push-in lugs	\checkmark	--	--
Integrated lugs for screw fixing	--	--	\checkmark
Width in mm	17.5 or 22.5	90	80

\checkmark Available
-- Not available

Industrial communication
AS-Interface
Slaves
/O modules for use in the control cabinet > SlimLine Compact

Overview

SlimLine Compact modules

SC17.5 and SC22.5 SlimLine Compact modules with screw terminals
The AS-Interface module series for the control cabinet SlimLine Compact with degree of protection IP20 creates space in the cabinet and in distributed local control boxes A width of just 17.5 mm or 22.5 mm ensures considerable space savings in the control cabinet.

The SlimLine Compact module series comprises not only digital and analog I/O modules but also ASIsafe modules with safe inputs. Digital outputs are available as solid-state and relay outputs.
Sensors and actuators, as well as the AS-Interface bus cable, are connected by means of removable screw or push-in springloaded terminals. Device connectors available as accessories offer the possibility of looping through the AS-Interface bus cable and the 24 V DC power supply $U_{\text {aux }}$ from one module to additional modules. This significantly simplifies the wiring, as the AS-Interface bus cable and $U_{\text {aux }}$ only have to be connected to one device.

SC22.5 SlimLine Compact module with connector with screw terminals
All devices for the connection of 3 -wire sensors offer the option of supplying the sensors either from the AS-Interface bus cable or alternatively from the 24 V DC voltage supply $U_{\text {aux }}$ depending on the requirements of the particular application. A slide switch is used to make the selection. If supply via $U_{\text {aux }}$ is selected, the wiring of the sensor terminals remains unchanged. This means that no external supply is required for the sensors.

All modules have LEDs on the front that provide diagnostics information and indicate the status of the module inputs and outputs. Devices with semiconductor outputs indicate the status of each output by means of a dual LED. Thus the status (on/off/ overload) is displayed for each output. An addressing socket integrated at the front enables the module to be addressed also when it is installed. Integrated adapters permit mounting onto a standard mounting rail - either directly for the module or for the device connector. Alternatively, the modules can also be screw-mounted using push-in lugs (accessories). These lugs for screw fastening must be ordered separately.

Selection and ordering data

Safety modules for AS-Interface, see page 2/26 onwards.

Industrial communication

AS-Interface
Slaves
//O modules for use in the control cabinet > SlimLine Compact

[^1]
More information

SlimLine S45 modules (picture on left) and S22.5 module (picture on right) with spring-loaded terminals

The existing SlimLine series of I/O modules for use in the control cabinet is being replaced by the new, innovative SlimLine Compact series. We recommend that these new devices are used in future.

The code conversion table indicates the best options for replacing the existing SlimLine devices with SlimLine Compact devices.

Note:
The previous SlimLine devices are still available for use as replacements in existing systems. As a result of the innovation, the new SlimLine Compact devices are not fully compatible in terms of either mechanical dimensions or electrical properties.

The code conversion table below links the existing S22.5, S22.5F and S45 SlimLine modules with the new SC17.5, SC17.5F and SC22.5 SlimLine Compact devices.

Code conversion table

S22.5, S22.5F and S45 SlimLine			Comparison type: SC17.5, SC17.5F and SC22.5 SlimLine Compact		
Screw terminals	Spring-loaded terminals	Version	Screw terminals	Spring-loaded terminals	Version
3RK1200-0CE00-0AA2	3RK1200-0CG00-0AA2	4 DI, 2-wire, standard address	3RK2200-0CE00-2AA2	3RK2200-0CG00-2AA2	4 DI, 2-wire, A/B address
3RK2200-0CE02-0AA2	3RK2200-0CG02-0AA2	$4 \mathrm{DI},$ A/B address	3RK2200-2CE00-2AA2	3RK2200-2CG00-2AA2	4 DI, A/B address
3RK1200-0CE02-0AA2	3RK1200-0CG02-0AA2	4 DI, standard address			
3RK1400-0BE00-0AA2	3RK1400-0BG00-0AA2	$\begin{aligned} & 2 \mathrm{DI} / 2 \mathrm{DQ}, \\ & \text { standard address } \end{aligned}$	3RK1400-2CE00-2AA2	3RK1400-2CG00-2AA2	4 DI / 4 DQ, standard address
3RK1402-0BE00-0AA2	3RK1402-0BG00-0AA2	2 DI / 2 DQ relay, standard address	3RK2402-2ME00-2AA2	3RK2402-2MG00-2AA2	4 DI / 2 DQ relay, A / B address
3RK1100-1CE00-0AA2	3RK1100-1CG00-0AA2	4 DQ, standard address	3RK2100-1CE00-2AA2	3RK2100-1CG00-2AA2	$\begin{aligned} & 4 \mathrm{DQ}, \\ & \mathrm{~A} / \mathrm{B} \text { address } \end{aligned}$
3RK2400-1CE01-0AA2	3RK2400-1CG01-0AA2	4 DI / 4 DQ, A/B address	3RK2400-2CE00-2AA2	3RK2400-2CG00-2AA2	$\begin{aligned} & 4 \mathrm{DI} / 4 \mathrm{DQ}, \\ & \text { A/B address } \end{aligned}$
3RK2400-1FE00-0AA2	3RK2400-1FG00-0AA2	4 DI / 3 DQ, A/B address			
3RK1400-1CE00-0AA2	3RK1400-1CG00-0AA2	4 DI / 4 DQ, 1A solid-state, standard address	3RK1400-2CE00-2AA2	3RK1400-2CG00-2AA2	4 DI / 4 DQ, 2A solid-state, standard address
3RK1400-1CE01-0AA2	3RK1400-1CG01-0AA2	4 DI / 4 DQ, 2A solid-state, standard address			
3RK1402-3CE01-0AA2	3RK1402-3CG01-0AA2	4 DI / 4 DQ (sensor supply from $U_{\text {aux }}$), standard address			
3RK1402-3CE00-0AA2	3RK1402-3CG00-0AA2	4 DI / 4 DQ relay, standard address	3RK2402-2CE00-2AA2	3RK2402-2CG00-2AA2	4 DI / 4 DQ relay, A/B address
3RK1205-0BE00-0AA2	3RK1205-0BG00-0AA2	$\begin{aligned} & 2 \text { F-DI, } \\ & \text { standard address } \end{aligned}$	3RK1205-0BE00-2AA2	3RK1205-0BG00-2AA2	$\begin{aligned} & 2 \text { F-DI, } \\ & \text { standard address } \end{aligned}$
3RK1405-0BE00-0AA2	3RK1405-0BG00-0AA2	$\begin{aligned} & 2 \text { F-DI / } 2 \mathrm{DQ}, \\ & \text { standard address } \\ & \text { (outputs supplied from } U_{\text {ASI }} \text {) } \end{aligned}$	3RK1405-2BE00-2AA2	3RK1405-2BG00-2AA2	2 F-DI / 2 DQ, standard address (supply $U_{\text {ASI }} / U_{\text {aux }}$ selectable)
3RK1405-1BE00-0AA2	3RK1405-1BG00-0AA2	$\begin{aligned} & 2 \mathrm{~F} \text {-DI / } 2 \mathrm{DQ}, \\ & \text { standard address } \\ & \text { (outputs supplied from } U_{\text {aux }} \text {) } \end{aligned}$			

Industrial communication

AS-Interface
Slaves
I/O modules for use in the control cabinet > F90 module

Selection and ordering data

	Version				SD d	Article No.	Price per PU		PS*	PG
F90 module - Slave addressing type: Standard address - Width 90 mm - With COMBICON version: Delivery without COMBICON plug										
	Type	Connection	Inputs	Outputs						
3RG9002-0DB00	4 inputs/ 4 outputs	Screw	$\begin{aligned} & \text { 2- and } \\ & \text { 3-wire } \\ & \text { PNP transistor } \end{aligned}$	PNP transistor 1 A	2	3RG9002-ODB00		1	1 unit	42C
			2- and 3-wire PNP transistor	$\begin{aligned} & \text { PNP transistor } \\ & 2 \text { A } \end{aligned}$	2	3RG9002-0DA00		1	1 unit	42C
			2- and 3-wire PNP transistor floating	PNP transistor $2 \mathrm{~A}$	2	3RG9002-0DC00		1	1 unit	42C
		$\mathrm{COMBICON}^{1)}$	2- and 3-wire PNP transistor	PNP transistor 1 A	2	3RG9004-0DB00		1	1 unit	42C
			2- and 3-wire PNP transistor	PNP transistor 2 A	2	3RG9004-0DA00		1	1 unit	42C
			2- and 3-wire PNP transistor floating	PNP transistor 2 A	2	3RG9004-0DC00		1	1 unit	42C

1) Scope of supply does not include COMBICON connector set

3RX9810-0AA00, this must be ordered separately, see "Accessories".
Accessories

Version	SD	Article No.	Price per PU		PS*	PG
d						
COMBICON connector sets 2	2	3RX9810-0AA00		1	1 unit	42C
For 4I/4O modules with COMBICON connection; one set comprises:						
- 4×5-pole plug for connection						
- Standard sensors/actuators						
- 2×4-pole plug for AS-Interface and external auxiliary voltage						

Overview

The flat module for the control cabinet in degree of protection IP20 has four inputs and four outputs.
The module is fitted at the front with an LED which indicates the module's status.

With the integrated lugs, the modules can be screwed on.
An integrated addressing socket enables the module to be addressed when it is installed.
Standard sensors/actuators and the AS-Interface cable can be connected using screw terminals.

Flat module 4I/4O
Selection and ordering data

AS-Interface
Slaves
Modules with special functions > Counter modules

Overview

Counter module with spring-loaded terminals
The counter module is used to send hexadecimally coded count values ($\mathrm{LSB}=\mathrm{DO}, \mathrm{MSB}=\mathrm{D} 3$) to a higher-level controller. The count value is increased by 1 for each valid count pulse at terminal 8 . Beginning at 0 , the module counts up to 15 and then begins again at 0 . The controller adopts the current value and determines the number of pulses between two host invocations through subtraction from the previous value. The total number of count pulses is determined by adding these differences.
For the values sent to be unambiguous, no more than 15 count values are allowed between two host invocations or AS-Interface master invocations at terminal 8. The maximum permissible transmission frequency is calculated from these times:
$f_{\text {TRmax }}=15 / T_{\text {max }}$
$T_{\text {max }}$: max. possible transmission time from the slave to the host
A further condition for the maximum frequency is the required pulse shape. For the counter to accept a pulse as valid, a Low must have been applied at the input for at least $300 \mu \mathrm{~s}$ and a High for at least 1 ms .

This results in a maximum frequency of $f_{\text {Zmax }}=1 / 1.3 \mathrm{~ms}=769 \mathrm{~Hz}$ independently of the control system (see figure below).

Maximum frequency for the counter module
If the time criterion stipulated in the figure is violated, the count value is rejected.

The counter is active only for the reset parameter P2 (default). The counter is deleted when P2 is set, and the incoming count pulses are not registered until after P2 is reset again.

Note:

A customized function block is necessary or must be programmed.

Counter module connection options

Selection and ordering data

Overview

Ground-fault detection module with spring-loaded terminals
"Ground faults in any control circuit must not lead to unintentional starting or potentially hazardous movements or prevent the machine from stopping." (IEC 60204-1 / VDE 0113-1).
The AS-Interface ground-fault detection module is used to meet these requirements. Using this module from the SlimLine series, ground faults in AS-Interface systems can be reliably detected and reported.
The following ground faults are detected:

- Ground fault from AS-i "+" to ground
- Ground fault from AS-i "-" to ground
- Ground fault on sensors and actuators that are supplied from the AS-Interface voltage.

Note:

Not suitable for AS-i Power24V.
Check whether the AS-i power supply unit or the AS-i master module, etc. features integrated ground-fault detection, and therefore whether a separate ground fault detection module can be omitted.

It should be noted that an AS-i cable segment behind an AS-i repeater requires its own ground-fault monitoring.

Selection and ordering data

Industrial communication

AS-Interface
Slaves
Modules with special functions > Overvoltage protection modules

Overview

AS-Interface overvoltage protection module
The AS-Interface overvoltage protection module (protection module) protects downstream AS-Interface devices or individual sections in AS-i networks from conducted overvoltages which can be caused by switching operations and remote lightning strikes. The location of the protection module forms the transition from zone 1 to $2 / 3$ within the lightning protection zone concept. Direct lightning strikes must be coped with using additional protective measures at the transitions from lightning protection zone OA to 1 .

With the AS-Interface overvoltage protection module, it is now also possible to integrate AS-Interface in the overall overvoltage protection concept of a plant or machine.
The module has the same design and degree of protection (IP67) as the AS-Interface K45 compact modules. It is a passive module and as such does not need its own address on the AS-Interface network. The module can be used to protect the AS-Interface cable and the cable for the auxiliary voltage from overvoltage. Overvoltages are discharged through a ground cable with a green/yellow oil-proof outer sheath. This cable is fixed in the module and must be connected with low resistance to the system's ground.

Rated discharge current $I_{\text {sn }}$

The rated discharge current is the peak value of a surge current of the form $8 / 20 \mu \mathrm{~s}$ (microseconds), for which the protection module is designed in accordance with a specified test program. With an $8 / 20$ waveform, 100% of the value is achieved after $8 \mu \mathrm{~s}$ and 50% after $20 \mu \mathrm{~s}$.

Protection level U_{p}

The protection level of a protection module is the highest momentary value of the voltage at the terminals, established in individual tests and characterizes the capability of a protection module to limit overvoltages to a residual level.

Configuration guidelines

The grounding of protection modules and the units to be protected must be effected through a shared grounding point.

If insulated devices are protected, their mounts must be included in the grounding points.

Sample application

Selection and ordering data

Overview

AS-Interface power supply unit for 3 A

More information
 Operating Instructions for AS-i power supply units, see
 https://support. industry. siemens. com/cs/ww/en/view/21489904 and
 https://support.industry.siemens.com/cs/ww/en/view/22317836

AS-Interface power supply units feed 30 V DC into the AS-Interface cable and supply the AS-Interface components. They include power-optimized data decoupling for the separation of communication signals and supply voltage. As the result, AS-Interface is able to convey both data and power along a single line. The power supply units are resistant to overload and short circuits.

Dimensions

AS-Interface power supply units have compact dimensions in widths of 50/70/120 mm. No distances from other devices need to be observed when mounting the power supply units.

Features

- Higher rating: The power supply units deliver currents of 2.6 to 8 A .
- Integrated data decoupling: As the result, AS-Interface is able to convey both data and power along a single line.
- Integrated ground-fault detection: The power supply units perform the reliable detection and signaling of ground faults according to IEC 60204-1. The AS-Interface voltage can be disconnected automatically in the event of a ground fault.
- Integrated overload detection: An output overload is detected and reported over a diagnostics LED.
- Diagnostics memory: Any ground faults or overloads on the output side are stored in a diagnostics memory and signaled until the device is RESET.
- Remote RESET and remote signaling: Using relay contacts, a ground fault can be signaled and evaluated by a central controller and/or indicator light.
- Diagnostics LEDs: Three different LEDs indicate the status of the AS-Interface power supply locally at the power supply unit.
- Ultra-wide input range/2-phase connection: The ultra-wide input range of 120 to 500 V of the 8 A version means that the supply units can be used in virtually any network worldwide. In addition, this version dispenses with the need for an N conductor as the device can be connected directly between 2 phases of a network.
- Operation with 24 V DC: The 3 A power supply unit is also available as a version with a 24 V DC input. This power supply unit is suitable for use in battery-powered systems or in systems with UPS (uninterruptible power supply).
- Removable terminal blocks with spring-loaded terminals: For easy exchanging of devices, each power supply unit has three removable terminal blocks: for the input side, for the output side and for Signal/RESET connections.

Benefits

- Complete solution for supplying AS-Interface networks while making full use of the maximum possible cable length per AS-i segment
- Only AS-i masters and AS-i slaves need to be connected to the AS-Interface cable in order to operate AS-Interface
- Compact, space-saving dimensions
- Reliable power supply even for large numbers of AS-Interface modules with a high power requirement
- Integrated ground-fault and overload detection saves the need for additional components and enhances safety
- Fast fault detection and reduced downtimes thanks to diagnostics memory, remote signaling and Remote RESET
- Reduced downtimes as the result of removable terminal blocks which enable the fast exchanging of devices
- Ultra-wide input range of the 8 A version permits 1-phase and 2-phase operation and removes the need for an N conductor
- Can be used world-wide thanks to, for example, UL/CSA approval (UL 508)
- With the 2.6 A version, the output power is restricted to max. 100 W for use in Class 2 circuits in accordance with NEC (National Electrical Code)

Industrial communication
AS-Interface
Power supply units and data decoupling modules
AS-Interface power supply units
Selection and ordering data

Industrial communication
 AS-Interface
 Power supply units and data decoupling modules

30 V power supply units

Overview

PSN130S 30 V power supply units for $3 \mathrm{~A}, 4 \mathrm{~A}$ and 8 A

More information

For operating instructions and other technical information, see
https://support.industry.siemens.com/cs/ww/en/view/64364000 and https://support.industry.siemens.com/cs/ww/en/view/44030789

The PSN130S 30 V power supply units feed 30 V DC into the AS-Interface cable and supply the AS-Interface components, but do not include data decoupling. Data decoupling modules are needed in addition therefore to separate communication signals and control supply voltage, see page 2/69 or 2/71.
The power supply units are resistant to overload and short circuits.

Dimensions

The 30 V power supply units have compact dimensions with widths of 50 and 70 mm . No distances from other devices need to be observed when mounting the power supply units

Features

- Primary switched-mode power supply units for connection to a 1-phase AC network
- Power for currents of $3 \mathrm{~A}, 4 \mathrm{~A}$ and 8 A
- The output voltage is floating, and resistant to short-circuits and no-load operation. If there is an overload, the output voltage is reduced or cut-off. After a short circuit or overload, the devices start up again automatically.
- In the event of a device fault, the output voltage will be limited to max. 37 V .
- Modular installation devices in degree of protection IP20 and safety class I
- Diagnostics: With an output voltage > 26.5 V DC, the green LED (30V O.K.) is lit and the signaling contact $13-14$ is closed.

Benefits

- Low-cost alternative solution for supplying AS-Interface networks while making full use of the maximum possible cable length per AS-i segment
- Cost advantage particularly for multiple networks
- Compact, space-saving dimensions
- Reliable power supply even for large numbers of AS-Interface modules with a high power requirement
- Can be used world-wide thanks to, for example, UL/CSA approval (UL 508)

Application

Configuration examples of AS-Interface networks with a 30 V power supply unit

[^2] Right: Triple network based on the SIMATIC S7-1200 with DCM 1271 data decoupling modules and CM 1243-2 communication processors

Industrial communication

AS-Interface
Power supply units and data decoupling modules
30 V power supply units

Technical specifications				
PSN130S 30 V DC power supply unit		3 A	4 A	8 A
Input data				
- Input voltage, rated value $U_{\text {e }}$	V AC	120/230 V, 1-phase, automatic selection		
- Range of input voltage	V AC	85 ... 132/174 ... 264		
- Mains frequency	Hz	50/60		
- Power consumption at full load, typ.	W	103	139	270
Output data				
- Output voltage, rated value U_{a}	V DC	30		
- Residual ripple	$m V_{p p}$	< 150		
- Output current, rated value at $-20 \ldots+60^{\circ} \mathrm{C}$	A	3	4	8
- Max. output current at $+60 \ldots+70^{\circ} \mathrm{C}$	A	3	3	4
Degree of efficiency in rated conditions				
- Degree of efficiency	\%	87	88	90
- Power loss, typ.	W	12	17	25

Selection and ordering data

Industrial communication
 AS-Interface
 Power supply units and data decoupling modules

S22.5 data decoupling modules

Overview

AS-Interface S22.5 double data decoupling module: Screw terminal version (picture left), Spring-loaded terminal version (picture right)

More information

Operating Instructions, see
https://support.industry.siemens.com/cs/ww/en/view/44030789
More information on AS-i Power24V, see System Manual for AS-Interface, https://support.industry.siemens.com/cs/ww/en/view/26250840

With the aid of the S22.5 data decoupling module, the AS-Interface network can also be supplied with 24 V DC or 30 V DC from a standard power supply unit and the transmission of data and power can be realized along one cable.

The combination of data decoupling modules and standard power supply units is therefore a cost-efficient alternative to the service-proven AS-Interface power supply units.

The quality of the data signals and the reliable operation of the AS-i network are not negatively affected as the result.

Features of the S22.5 data decoupling module

- Degree of protection IP20
- Narrow design: 22.5 mm wide
- Version with screw or spring-loaded terminals
- Versions for single and double data decoupling
- Supply of several AS-i networks with a single power supply unit
- Operation with 24 V DC or 30 V DC, grounded or non-grounded
- Adjustable current limiting up to $2 \times 4 \mathrm{~A}$
- Integrated ground-fault detection with fault storage, display can optionally be switched off
- Diagnostics LEDs and signaling contacts
- RESET by button or Remote RESET

Ground-fault detection

The integrated ground-fault detection works with a grounded and non-grounded supply: The connection of negative pole and ground (upstream from the data decoupling module) customary with 24 V DC power supplies is permitted. A ground fault to the negative or positive pole on the AS-Interface network (downstream from the data decoupling module) is detected and stored as a fault and will be signaled using LEDs and a relay contact.
Using the ground-fault detection in the AS-i master is recommended for non-grounded supply. In this case, the ground-fault indicator can be deactivated in the data decoupling module to avoid any unwanted LED messages.

Benefits

- Compatible expansion of the AS-Interface system
- An existing standard power supply unit with 24 V DC or 30 V DC can be used for supplying AS-i networks
- The AS-Interface system can also be used in tightly budgeted applications because no AS-Interface power supply unit needs to be purchased
- Applications benefit in addition from the advantages of a modern bus system:
- High level of standardization
- Additional diagnostics and maintenance information
- Faster commissioning
- Easy and cost-efficient design of single and multiple networks is possible

Application

The AS-Interface data decoupling module is designed for AS-Interface networks with 30 V or 24 V supply (AS-i Power24V).
Operation of an AS-i network with the data decoupling module and a 30 V standard power supply unit is technically equivalent to the use of an AS-Interface power supply unit and offers the service-proven features of AS-Interface for all applications.
AS-Interface Power24V uses a 24 V power supply unit in conjunction with a data decoupling module and is particularly suitable for:

- Compact machines using AS-Interface input/output modules
- Applications in the control cabinet for AS-Interface integration of SIRIUS 3RT2 contactors using 3RA27 function modules
When using the double data decoupling module or other data decoupling modules, several AS-Interface networks can be operated with a single power supply unit. This results in an additional cost advantage.
Note:
The power supply units must comply with the ES1
(IEC/EN 62368-1) or PELV (Protective Extra Low Voltage)/SELV (Safety Extra Low Voltage) standards, have a residual ripple of $<250 \mathrm{mV}$ pp , and in the event of a fault must limit the output voltage to a maximum of 40 V .
We recommend
- SITOP power supplies, see page 15/1 or Catalog KT 10.1, https://support.industry. siemens.com/cs/ww/en/view/109745655.
- PSN130S 30 V power supply units, see page 2/67

Note on AS-i Power24V:
The length of an AS-i Power24V network is restricted to 50 m in order to limit the voltage drop along the cable.
AS-i masters, AS-i slaves and the sensors and actuators supplied through the AS-i cable must be designed for the reduced voltage. Sensors and actuators for the standard voltage range of 10 to 30 V can be supplied with sufficient voltage.
Please also observe the requirements specified in
"AS-i Power24V" for implementation of AS-i Power24V, see page 2/21.
For more information on AS-i Power24V, see System Manual for AS-Interface,
https://support.industry.siemens.com/cs/ww/en/view/26250840.

Industrial communication

AS-Interface
Power supply units and data decoupling modules

S22.5 data decoupling modules

Construction of an AS-i Power24V network with an AS-Interface S22.5 data decoupling module

Left: single network, right: multiple network
Selection and ordering data

	Version	SD	Article No.	Price per PU	(UNIT, SET, M)	PS*	PG
		d					
	S22.5 data decoupling modules		Screw terminals	\bigcirc			
0	With screw terminals, removable terminals, width 22.5 mm , height 101 mm , depth 115 mm						
	- Single data decoupling module, $1 \times 4 \mathrm{~A}$	2	3RK1901-1DE12-1AAO		1	1 unit	42 C
	- Double data decoupling module, $2 \times 4 \mathrm{~A}$	2	3RK1901-1DE22-1AAO		1	1 unit	42 C
	S22.5 data decoupling modules		Spring-loaded	O			
	With spring-loaded terminals, removable terminals, width 22.5 mm , height 105 mm , depth 115 mm		terminals	\square			
	- Single data decoupling module, $1 \times 4 \mathrm{~A}$	-	3RK1901-1DG12-1AA0		1	1 unit	42C
	- Double data decoupling module, $2 \times 4 \mathrm{~A}$	-	3RK1901-1DG22-1AAO		1	1 unit	42 C

Industrial communication

AS-Interface
Power supply units and data decoupling modules
Data decoupling modules for S7-1200 > DCM 1271 data decoupling module

Overview

DCM 1271 data decoupling module for SIMATIC S7-1200

More information
 Equipment Manual for AS-i Master CM 1234-2
 and AS-i DCM 1271 data decoupling unit, see
 https://support.industry.siemens.com/cs/ww/en/view/57358958
 More information on AS-i Power24V, see System Manual for AS-Interface, https://support.industry.siemens.com/cs/ww/en/view/26250840

With the aid of the DCM 1271 data decoupling module, the AS-Interface network can also be supplied with 24 V DC or 30 V DC from a standard power supply unit and the transmission of data and power can be realized along one cable.

The DCM 1271 data decoupling module has the same enclosure design as the S7-1200 module and is therefore ideal for combining with the CM 1243-2 AS-i master.
The DCM 1271 data decoupling module has no connection to the backplane bus of the SIMATIC S7-1200 and is not counted as a communication module when calculating the maximum configuration.

Features of the DCM 1271 data decoupling module

- Design: S7-1200, 30 mm wide, degree of protection IP20
- Detachable terminals (scope of supply)
- Single data decoupling
- Supply of several AS-i networks with a single power supply unit
- Operation with 24 V DC or 30 V DC, grounded or non-grounded
- Current limiting at 4 A
- Integrated ground-fault detection
- Diagnostics LEDs for ground faults and overloads
- Signaling contacts for ground-fault detection

Ground-fault detection

The integrated ground-fault detection works with a grounded and non-grounded supply: The connection of negative pole and ground (upstream from the data decoupling module) customary with 24 V DC power supplies is permitted. A ground fault to the negative or positive pole on the AS-Interface network (downstream of the data decoupling module) is identified and signaled via LED and a transistor output.

Benefits

- An existing standard power supply unit with 24 V DC or 30 V DC can be used for supplying AS-i networks
- The AS-Interface system can also be used in tightly budgeted applications because no AS-Interface power supply unit needs to be purchased
- Applications benefit in addition from the advantages of a modern bus system:
- High level of standardization
- Additional diagnostics and maintenance information
- Faster commissioning

Industrial communication

AS-Interface
Power supply units and data decoupling modules
Data decoupling modules for S7-1200 > DCM 1271 data decoupling module

Application

The AS-Interface data decoupling module is designed for AS-Interface networks with 30 V or 24 V supply (AS-i Power24V).
Operation of an AS-i network with the data decoupling module and a 30 V standard power supply unit is technically equivalent to the use of an AS-Interface power supply unit and offers the service-proven features of AS-Interface for all applications.
AS-i Power24V uses a 24 V power supply unit in conjunction with a data decoupling module and is particularly suitable for

- Compact machines using AS-Interface input/output modules
- Applications in the control cabinet for AS-Interface integration of SIRIUS 3RT2 contactors using 3RA27 function modules
Note:
The power supply units must comply with the ES1
(IEC/EN 62368-1) or PELV (Protective Extra Low Voltage)/SELV (Safety Extra Low Voltage) standards, have a residual ripple of $<250 \mathrm{mV}_{\mathrm{pp}}$, and in the event of a fault must limit the output voltage to a maximum of 40 V .

We recommend

- SITOP power supplies, see page 15/1 or Catalog KT 10.1, https://support.industry.siemens.com/cs/ww/en/view/109745655
- PSN130S 30 V power supply units, see page 2/67

Note on AS-i Power24V:

The length of an AS-i Power24V network is restricted to 50 m in order to limit the voltage drop along the cable.
AS-i masters, AS-i slaves and the sensors and actuators supplied through the AS-i cable must be designed for the reduced voltage. Sensors and actuators for the standard voltage range of 10 to 30 V can be supplied with sufficient voltage.

Please also observe the requirements specified in
"AS-i Power24V" for the operation of AS-i Power24V, see page 2/21.
For more information on AS-i Power24V, see System Manual for AS-Interface,
https://support.industry.siemens.com/cs/ww/en/view/26250840.

Configuration of an AS-i Power24V network with DCM 1271 AS-Interface data decoupling module

AS-Interface
Power supply units and data decoupling modules
Data decoupling modules for S7-1200 > DCM 1271 data decoupling module
Selection and ordering data

Accessories

Overview

AS-Interface shaped cable

The actuator-sensor interface - the networking system used for the lowest field area - is characterized by very easy mounting and installation. A new connection method was developed specially for AS-Interface.
The stations are connected using the AS-Interface cable.
This 2-wire AS-Interface shaped cable has a trapezoidal shape, thus ruling out polarity reversal.
Connection is effected by the insulation piercing method. In other words, male contacts pierce the shaped AS-Interface cable and make reliable contact with the two wires. Cutting to length and stripping are superfluous. Consequently, AS-Interface stations (e.g. I/O modules, intelligent devices) can be connected in the shortest possible time and exchanging devices is quick.

To enable use in the most varied ambient conditions (e.g. in an oily environment), the AS-Interface cable is available in different materials (rubber, TPE, PUR).
For special applications it is also possible to use an unshielded standard round cable H05VV-F $2 \times 1.5 \mathrm{~mm}^{2}$ according to AS-i specification. With AS-Interface, data and energy for the sensors (e.g. proximity switches) and actuators (e.g. indicator lights) are transmitted over the yellow AS-Interface cable.
The black AS-Interface cable must be used for actuators with a 24 V DC supply (e.g. solenoid valves) and a high power requirement.

Suitable for operation in cable carriers

The use of the AS-Interface shaped cables with TPE and PUR outer sheath was checked in a cable carrier test with the following conditions:

Chain length	m	6
Travel	m	10
Bending radius	mm	75
Travel speed	m / s	4
Acceleration	$\mathrm{m} / \mathrm{s}^{2}$	4
Number of cycles		10 million
Duration of test		approx. 3 years (11 000 cycles per day)

After termination of the 10 million cycles only slight wear was visible due to the lugs of the cable carrier. No damage to the cores and core insulation could be detected.

Note:
When using a cable carrier, the cables must be installed in such a way that they are not subject to tensile forces. On no account may the cables be twisted, but they must be routed flat through the cable carrier.

Selection and ordering data

Overview

AS-Interface repeater

The AS-Interface repeater is used to extend the AS-Interface cable.

- In its basic version, an AS-i network comprises one segment with a maximum cable length of 100 m . An extension plug (see page 2/76) can be used to increase the cable length for a segment to a maximum of 200 m .
- If this is insufficient, however, you can use one or more repeaters
- A repeater adds an extra segment to an existing segment. The extra segment can have a cable length of up to 100 m (without extension plug) or up to 200 m (with an extension plug in the extra segment)
- Each segment requires a separate AS-i power supply unit
- Electrical separation of the two AS-Interface shaped cable lines
- Slaves can be used on both sides of the repeater
- The additional power supply can increase the current infeed for slaves/sensors and lower the voltage drop on the AS-i cable
- Separate display of the correct AS-Interface voltage for each segment
- Installed in K45 module enclosure IP67 with mounting plate
- Easy mounting

Benefits

- More possibilities of use and greater freedom for plant planning through extension of the AS-Interface network
- Reduced downtime and servicing times in the event of a fault thanks to separate display of the correct AS-Interface voltage for each side

Design of an AS-Interface network with repeaters

- Parallel switching of several repeaters possible (star configuration)
- Combination of series and parallel switching possible

The following conditions apply:

- When used without an extension plug no more than two repeaters are permitted between AS-i master and slave (repeaters connected in series)
- When used with an extension plug no more than one repeater is permitted between AS-i master and slave
In safety-related applications the following also applies:
- When used without an extension plug, no more than two repeaters are permitted between evaluation unit (e.g. MSS ASIsafe Modular Safety System, F-CM AS-i Safety ST for ET 200SP) and ASIsafe input slave or safe output module.
- When used with an extension plug, no more than one repeater is permitted between the evaluation unit (e.g. MSS ASIsafe Modular Safety System, F-CM AS-i Safety ST for ET 200SP) and ASIsafe input slave or safe output module.

Design of an example AS-Interface network with repeaters (without extension plug)

Note:

The AS-Interface repeater is not suitable for AS-i Power24V networks. It is recommended for use in AS-Interface networks with AS-Interface power supply units (e.g. 3RX9501-OBA00).

Application

The repeater is used to extend the AS-Interface network. In this case there are AS-Interface slaves and one AS-Interface power supply unit on each side of the repeater.

In the case of a line topology with two repeaters and three extension plugs, the maximum possible size of the AS-Interface network is 600 m , see example configuration with extension plug on page 2/76.

Selection and ordering data

	Version	Article No.	Price per PU	PU (UNIT, SET, M)

Industrial communication

AS-Interface
System components and accessories

Extension plugs

Overview

AS-Interface extension plug compact
With the extension plug it is possible to double the cable length possible in an AS-Interface segment from 100 to 200 m .
Only one power supply unit is needed to supply power to the slaves on the up to 200 m long segment.

The extension plug compact can be installed directly onto an AS-i shaped cable. A separate M12 feeder, as was required for earlier extension plug versions, is no longer required with extension plug compact.

Design of an AS-Interface segment with an extension plug

To construct an AS-Interface segment with a cable length of more than 100 m and up to a maximum of 200 m , the extension plug is installed in a radius of around $\pm 10 \mathrm{~m}$ at the point of the network that is furthest from the power supply unit. The extension plug is not allowed to be used in AS-Interface networks smaller than 100 m . As with all AS-Interface networks, any network structure (line, tree, star) is possible when using the extension plug. Only one extension plug is required per 200 m segment even with a tree or star structure.
Note:
The AS-i bus cable must not terminate in the extension plug compact. The AS-Interface shaped cable can be terminated by means of a cable terminating piece to provide degree of protection IP67 where required, see "Miscellaneous accessories" on page 2/83.
The AS-Interface extension plug is not suitable for AS-i Power24V networks.

Maximum network size with repeaters and extension plug (master at center of network)

Selection and ordering data

	Version	SD d	Article No.	Price per PU		PS*	PG
3RK1901-1MX02	AS-Interface extension plug compact - Doubling of the cable length to 200 m per AS-Interface segment - With direct connection to AS-Interface shaped cable - Module does not require an AS-i address	2	3RK1901-1MX02		1	1 unit	42C

Accessories

Overview

The innovated addressing unit for AS-Interface of the AS-i specification V3.0

The addressing unit is used to assign an address during commissioning to each AS-Interface slave. The device detects a connected slave module or a complete AS-i network and displays the found module in the LCD display. Each address can be individually set using the Up/Down keys. By turning the rotary switch, further commissioning functions are selected intuitively. The innovative device has been adapted to the current AS-i specification V3.0 and can now also handle the I/O data of the latest slaves.

Functionality

- Reading out and adjusting the slave address 0 to 31 or 1 A to $31 \mathrm{~A}, 1 \mathrm{~B}$ to 31 B , with automatic addressing aid and prevention of double addresses
- Reading out the slave profile (IO, ID, ID2)
- Reading out and adjusting the ID1 code
- Input/output test when commissioning the slaves: Read input signals and write outputs with all digital and analog slaves according to AS-Interface specification V3.0, including safe input slaves and complex CTT2 slaves
- Measuring the voltage on the AS-Interface cable (measuring range from 2 to 35 V)
- Display of the operational current in case of direct connection of an AS-i slave (measuring range from 0 to 150 mA)
- Storage of complete network configurations (profiles of all slaves) to simplify the addressing
- Adjusting the slave parameters for commissioning
- Reading out the identification and diagnostics of CTT2 slaves
- Reading out the code table of safe input slaves (ASIsafe)

Note:

For operation of the addressing unit on an AS-Interface cable with connected power supply unit, the following applies: The AS-Interface addressing unit is suitable for standard AS-i networks and AS-i Power24V networks (min. operational voltage on the AS-Interface cable 19 V).

Benefits

- Increased power supply to the slaves to 150 mA
- Better utilization of the battery capacity thanks to improved circuitry
- Support for the current AS-i specification V3.0
- Expanded display for simultaneously displaying input and output states
- Clearly recognizable display of status of digital inputs/outputs in binary format (0/1), optionally also available as hexadecimal values
- Intuitive display of analog data either as decimal, hexadecimal or as a percentage (e.g. 100\% corresponds to input/output value 20 mA)
- I/O data of complex slaves (CTT2 profile) can be displayed
- Decoded display of the input data of safe input slaves, including code table
- Simplification of the operating steps when setting the slave address with automatic read back of the set address
- Addressing cable, ready for operation even without screwing in tight into the M12 socket, thus faster availability of the addressing unit
- Proven compact housing with smooth keys and rotary switch
- Connection of standard AS-i networks possible with 30 V as well as Power24V networks
- Complex slaves with high operating currents can be addressed without external supply
- Longer operating time by automatic shutdown after approx. 5 minutes (or approx. 1 minute when data exchange is active) after last operation
- Can be used with all types of digital and analog slaves
- Comprehensive and fast input/output test of plants, even for A/B slaves with $4 \mathrm{DI} / 4 \mathrm{DQ}$ and current analog modules with an A / B address
- Faster and more reliable commissioning of the AS-Interface modules
- One-hand operation possible, with unique selection of the functions
- Connection via M12 socket (pin 1: ASI+; pin 3: ASI-; pins 2, 4, 5: not used)
- Universal applicability for all AS-i networks

Selection and ordering data

	Version	SD d	Article No.	Price per PU		PS*	PG
3RK1904-2AB02	AS-Interface addressing unit V3.0 - For AS-Interface modules and sensors and actuators with integrated AS-Interface according to AS-i specification V3.0 - for setting the AS-i address of slaves with standard addresses, and slaves with extended addressing mode (A/B slaves) - With input/output test function and many other commissioning functions - Battery operation with four type AA batteries (IEC LR6, NEDA 15) - Degree of protection IP40 - Dimensions (W $\times \mathrm{H} \times \mathrm{D}$) mm: $84 \times 195 \times 35$ - Scope of supply: - Addressing unit with 4 batteries - Addressing cable, with M12 plug to addressing plug (hollow plug), length 1.5 m	2	3RK1904-2AB02		1	1 unit	42C

Industrial communication
AS-Interface
System components and accessories
Addressing units

Accessories

	Version	SD	Article No.	Price per PU		PS*	PG
	d						
3RK1902-4PB15-3AA0	Addressing cable, with M12 plug to M12 socket ${ }^{1)}$ - For addressing slaves with M12 connection, e.g. K20 or K60R modules or light curtains - Length $1.5 \mathrm{~m}, 3$-pole, $3 \times 0.34 \mathrm{~mm}^{2}$	2	3RK1902-4PB15-3AA0		1	1 unit	42D
	AS-Interface M12 3RX feeder - Transition of AS-Interface cable to a standard round cable - Insulation piercing method for connection of AS-Interface cable - M12 socket for connection of standard round cable - Current carrying capacity up to 2 A	-	3RX9801-0AA00		1	1 unit	42C
3RK1901-2NR10	AS-Interface M12 3RK feeder - AS-Interface cable transition without $U_{\text {aux }}$, with M12 socket - Insulation piercing method for connection of AS-Interface cable - M12 socket for connection of standard round cable	2	3RK1901-2NR10		1	1 unit	42C
	M12 cable plug ${ }^{2}$) - Extruded M12 plug (angled cable feeder 90°), other cable end open - Length: 5 m, 5-pole, color: Black	2	3RK1902-4HB50-5AA0		1	1 unit	42D
	M12 plug, straight ${ }^{\text {2 }}$ - For screw fixing, 5 -pole screw terminal, max. $0.75 \mathrm{~mm}^{2}$ - A-coded, max. 4 A	2	3RK1902-4BA00-5AA0		1	1 unit	42D
	Addressing cable, with M12 plug to addressing plug (hollow plug) ${ }^{3}$) - Included in the scope of supply of the addressing unit - Length 1.5 m		Z236A				

${ }^{\text {1) }}$) Not included in scope of supply of the 3RK1904-2AB02 addressing unit.
2) For connecting the addressing unit to an AS-i network via AS-Interface M12 feeder, a connecting cable (M12 plug to M12 connector) must be produced and requires the following wiring:

- M12 cable plug: Pin 1 / core brown \leftrightarrow M12 plug: Pin 1
- M12 cable plug: Pin 3 / core blue \leftrightarrow M12 plug: Pin 3
- Pin 2, 4, 5 not connected.
${ }^{3)}$ Can only be ordered from GMC-I Messtechnik GmbH, see "External partners", page 16/16.

Overview

AS-Interface analyzer
The AS-Interface analyzer is used to test AS-Interface networks. Installation errors, e.g. loose contacts or EMC interference under extreme loads, can be revealed by this device.
Thanks to the easy-to-use software the user can assess the quality of complete networks even if he lacks detailed specialist knowledge of AS-Interface. In addition it is an easy matter with the AS-Interface analyzer to create test logs from the records produced, thus providing documentation for startups and service assignments.
For advanced AS-Interface users there are trigger functions for detailed diagnostics.

Connection

Connection of AS-Interface analyzer to PC and AS-Interface network
The AS-Interface analyzer follows the communication on the AS-Interface network as a passive station. The unit is supplied simultaneously from the AS-Interface cable.
This analyzer interprets the physical signals on the AS-Interface network and records the communication.
The data thus obtained is transferred through an RS 232 interface to a PC such as a notebook, for evaluation with the supplied diagnostics software.

Benefits

- Simple and user-friendly operation enables diagnostics of AS-Interface networks without help from specialists
- Speedy troubleshooting thanks to intuitive display in statistics mode
- Test logs provide verification of the state and quality of the installation for service and approval
- Recorded logs facilitate remote diagnostics by Technical Support
- Comprehensive trigger functions enable exact analysis
- Process data can be monitored online

Industrial communication

AS-Interface
System components and accessories
Analyzer

Application

Online statistics

Online statistics, overview

Online statistics, details, e.g. here a fault on slave 5
This mode provides a quick overview of the existing AS-Interface system. The error rates are displayed per slave in a traffic-light function (green, yellow, red).
The bus configuration and the currently transmitted data of the slaves are shown in a well arranged presentation.

With the expanded statistics function, it is possible to determine the error rates as the number of transmitted or faulty bus message frames.
The bundle error overview shows in steps how many multiple repetitions of message frames occurred in order to enable a selective and look-ahead assessment of the transmission quality.

Data mode

Presentation of the I/O data: Safety data

Presentation of the I/O data: Analog values
In this mode, the analyzer shows not only the digital input/output values but also the current analog values and the input status of the safety slaves.

Industrial communication
 AS-Interface
 System components and accessories

Analyzer

Trace mode

Presentation of message frames in trace mode
The presentation of message frames in the style of a classic fieldbus analyzer is indispensable for complex troubleshooting. Extensive trigger functions and recording and viewing filters are available for this purpose. An external trigger input and trigger output round off the scope of functions in order to find even the most difficult errors.
For troubleshooting in connection with ASIsafe applications, changes of status in the code tables of safety slaves are identified and assessed.

The AS-i analyzer can be used with an AS-i master in accordance with AS-Interface specification V3.0 or a predecessor version.
The analyzer does not automatically decode the process values for type CTT2 - CTT5 AS-i slaves. As for other slave types, the message frames are recorded and evaluated in the statistics. If required, decoding can also be performed by the user manually.
More information, see
https://support.industry.siemens.com/cs/ww/en/view/109746763.

Test log

Example of a test log
The recorded data of the online statistics are easy to output and document using a test log. Verification of the state of the plant can thus be provided for approvals or service assignments.
The integrated measurement assistant records the bus signals for a variable duration, thereby triggering creation of an automatic test log. A standardized quality test of AS-i plants is thus possible.
Note:
The AS-Interface analyzer is suitable for standard AS-i networks and AS-i Power24V networks (min. operating voltage 20 V).

Selection and ordering data

Note:
Download the current version of the diagnostics software for PC with Windows operating system, see
https://support.industry.siemens.com/cs/ww/en/view/109750259.

Industrial communication
AS-Interface
System components and accessories
Analyzer

Accessories

	Version	SD	Article No.	Price per PU		PS*	PG
	d						
	AS-Interface M12 3RX feeder - Transition of shaped AS-Interface cable to a standard round cable - Insulation piercing method for connection of AS-Interface cable - M12 socket for connection of standard round cable - Current carrying capacity up to 2 A - Degree of protection IP67	-	3RX9801-0AA00		1	1 unit	42C
	AS-Interface M12 3RK feeder - AS-Interface cable transition without $U_{\text {aux }}$, with M12 socket - Insulation piercing method for connection of AS-Interface cable - M12 socket for connection of standard round cable - Max. 4 A - Degree of protection IP67/IP68/IP69 (IP69K)	2	3RK1901-2NR10		1	1 unit	42C
	M12 cable plugs - PUR cable, 5-pole - Length 5 m - Color black - Extruded M12 plug (angled cable feeder 90°), other cable end open	2	3RK1902-4HB50-5AA0		1	1 unit	42D

Selection and ordering data

https://support. industry.siemens.com/cs/ww/en/view/26250840

AS-Interface compact distributors,

 for AS-Interface flat cable- Current carrying capacity up to 8 A

3RK1901-2NR10

3RK1901-2NR21

6ES7194-1KA01-0XA0

3RK1901- 3RK19011 KA00 1KA01

3RK1901-1PNOO

3RK1901-1MD00

Version	SD Article No.	Price per PU	PU (UNIT, SET, M)

- Degree of protection IP67/IP68/IP69 (IP69K)

AS-Interface M12 3RX feeder

- Degree of protection IP67
- Current carrying capacity up to 2 A

For flat cable	For	Cable length	Cable end in feeder					
AS-i	M12 socket	--	Available	-	3RX9801-0AA00	1	1 unit	42C

AS-Interface M12 3RK feeder

- Degree of protection IP67/IP68/IP69 (IP69K)
- Current carrying capacity up to 4 A

Industrial communication

AS-Interface

System components and accessories

Miscellaneous accessories

Overview

IO-Link is an open communication standard for sensors and actuators - defined by the PROFIBUS User Organization (PNO). IO-Link technology is based on the point-to-point connection of sensors and actuators to the control system.

Parameter and diagnostics data are transmitted in addition to the cyclic operating data for the connected sensors/actuators. The simple, unshielded 3 -wire cable customary for standard sensors is used for this purpose.

IO-Link in the SIMATIC NET communications landscape

Benefits

Engineering

- Standardized, open system for greater flexibility (non-Siemens IO-Link devices can be integrated in engineering)
- Uniform, transparent configuring and programming through integrated engineering (SIMATIC STEP 7)
- Unassigned SIMATIC function blocks for easy parameterization, diagnostics and read-out of measured values
- Efficient engineering thanks to pre-integration into SIMATIC HMI
- Low error rate in CAD circuit diagram design as a result of reduced control current wiring

Installation and commissioning

- Faster assembly with minimized error rate as a result of reduced control current wiring
- Less space required in the control cabinet
- Low-cost circuitry where there are several feeders by making full use of existing components

Operation and maintenance

- High transparency in the system right down to field level and integration into power management systems
- Reduction in downtimes and maintenance times thanks to system-wide diagnostics and faster fault correction
- Support of predictive maintenance
- Shorter changeover times, even for field devices, by means of parameter and recipe management

Application

IO-Link can be used in the following main applications:

- Easy connection of complex IO-Link sensors/actuators with a large number of parameters and diagnostics data to the control system
- Replacement of sensor boxes for connecting binary sensors with the IO-Link input modules optimized in terms of cabling
- Optimized cable connection of switching devices to the control system
- Simple transmission of energy values from the device to the control system for integration into a user program or power management
In these cases, all the diagnostics data are transmitted to the higher-level control system through IO-Link. The parameter settings can be changed during operation.

Integration in STEP 7

Integration of the device configuration in the STEP 7 environment guarantees:

- Quick and easy engineering
- Consistent data storage
- Quick localization and rectification of faults

Industrial communication
 IO-Link
 Introduction

System components

Overview

More information

Homepage, see www.siemens.com/io-link
For important topics at a glance, see
TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=loLink
https://support.industry.siemens.com/cs/ww/en/view/109737170

IO-Link product family
To implement communication, a system installation has the following main components:

- An IO-Link master
- One or more IO-Link devices, such as sensors (e.g. RFID systems), actuators or combinations thereof
- A standard 3 -wire sensor/actuator cable

Example of a configuration with the system components

IO-Link compatibility

IO-Link ensures compatibility between IO-Link-capable modules and standard modules as follows:

- IO-Link sensors can generally be operated both on IO-Link modules (masters) and standard input modules.
- IO-Link sensors/actuators as well as today's standard sensors/actuators can be used on IO-Link masters.
- If conventional components are used in the IO-Link system, then of course only the standard functions are available at this point.

Analog signals

Another advantage of IO-Link technology is that analog signals are already digitized in the IO-Link sensor itself and are digitally transmitted via IO-Link communication. As the result, faults are prevented and there is no extra cost for cable shielding.

Enhancement with IO-Link input modules

IO-Link compatibility also permits connection of standard sensors/actuators, i.e. conventional sensors/actuators can also be connected to IO-Link. This is particularly cost-effective with the IO-Link input modules, which allow several sensors to be connected at one time via a cable to the controller.

Overload relays

A starter combination, for example, consists of one or more SIRIUS 3RT contactors and one 3RB24 electronic overload relay for IO-Link plus its 3RB29 current measuring module.
3RB24 overload relays with IO-Link are basically designed to provide current-dependent protection for loads against inadmissibly high temperature rises due to overload, phase asymmetry or phase failure.
Direct-on-line starters can, therefore, as shown in the image, be connected to the control system via IO-Link without much wiring. Remote control of connected contactors, current value transmission and immediate remote fault diagnosis are just some examples of the large number of functions that can be implemented with this device.
It is also possible to directly address a drive on-site via IO-Link using the optional hand-held device.

Connection of an IO-Link-capable overload relay to a SIMATIC S7-1200 controller

Load feeders and motor starters

Through IO-Link it is possible to control not only sensors but also actuators in the form of load feeders and motor starters.

Possibilities for connecting load feeders and motor starters to IO-Link or in the conventional way

Industrial communication

IO-Link
Introduction

System components

Monitoring relays

By using monitoring relays with IO-Link it is now possible to send data that has already been recorded and evaluated in the devices directly to the controller. This avoids the use of duplicated sensors.

(1) Signaling of limit value violation plus measurement data transmission to PLC
(2) Autonomous operation without PLC
(3) Signaling of limit value violation to PLC

Possibilities of interfacing conventional 3UG46 monitoring relays (in comparison with 3UG48)

Possibilities of interfacing 3UG48 monitoring relays for IO-Link

Wireless communication

Using an upstream IWLAN client module, such as SCALANCE W722-1 RJ45, allows IO-Link to be integrated into the PROFINET world via a distributed I/O. Possible uses include acting as an alternative to fault-prone cable carrier or collector wire technology.

The individual diagnostics options offered by the various IO-Link devices provide greater transparency for the production process. Just like the parameter data for a device, these diagnostics data can be evaluated remotely using the possibilities offered by SIMATIC. This supports remote maintenance down to the lowest level in the field.

Wireless communication between Industrial Ethernet and IO-Link components

Industrial communication

IO-Link
Introduction

System components

IO-Link components

IO-Link masters

Masters

CM 8xIO-Link for S7-1500

IO-Link master module for S7-1500

- CM 8xIO-Link communication module, see page 2/93

IO-Link master module for S7-1200

- SM 1278 4xIO-Link signal module, see page 2/94

IO-Link master module for ET 200SP

- CM 4xIO-Link V1.1 Standard communication module, see page 2/95

IO-Link master module for ET 200pro

- 4 IO-Link HF electronic module, see page 2/96

IO-Link master module for ET 200eco PN

- IO-Link master 4 IO-L + 8 DI + 4 DO 24 V DC/1.3 A
- IO-Link master 4 IO-L
- IO-Link master 8 IO-L + 4 DI 24 V DC

See page 2/97

IO-Link master module for ET 200AL

- CM IO-Link communication module, see page 2/98

For full product range, see Catalog ST 70.

IO-Link devices

Detection with IO-Link

IO-Link input modules

K20 input module

- 4 inputs, M12 connections
- 8 inputs, standard M8 connections

See page 2/100

K20 input module

SIRIUS 3RA2711
function module for IO-Link

SIRIUS 3RA64 direct-on-line starter

SIRIUS 3RB24 overload relay

Switching with IO-Link

Contactors and contactor assemblies

SIRIUS 3RT contactors, 3-pole up to 250 kW , see page 3/17 onwards
SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW , see page 3/147 onwards
SIRIUS 3RA24 contactor assemblies for wye-delta starting, up to 90 kW , see page 3/162 onwards
SIRIUS 3RA27 function modules

- For direct-on-line, reversing, and star-delta (wye-delta) starting with IO-Link connection, see page 3/108 onwards

Motor starters for use in the control cabinet
SIRIUS 3RA64, 3RA65 compact starters for IO-Link

- 3RA64 direct-on-line starters, see page 8/68
- 3RA65 reversing starters, see page 8/69

Infeed system for 3RA6, see page 8/78 onwards Accessories, see page 8/70 onwards

Contactors with IO-Link

Overload relays

SIRIUS 3RB24 electronic overload relays for IO-Link

- Evaluation modules
- Current measuring modules from 0.3 to 630 A
- Controlling direct-on-line, reversing and star-delta starters via IO-Link in conjunction with contactors
- Full motor protection
- Diagnostics and current value transmission via IO-Link

See page 7/136 onwards

IO-Link devices (continued)

SIRIUS 3RR24 monitoring relay

SIRIUS 3UG48 monitoring relay

SIRIUS 3RS28
temperature monitoring relay

SIRIUS ACT
3SU1 ID keyoperated switch

SIRIUS ACT 3SU1 electronic module

- Connection with bayonet mechanism
- For fastening on feet, 8WD44
- Connection elements with screw or spring-loaded terminals or connection element with 5-pole M12 plug
See page 13/184 onwards

Monitoring with IO-Link

SIRIUS 3RR24 monitoring relays for mounting onto 3RT2 contactors for IO-Link

- Monitoring of current, phase failure, open circuit and phase sequence
- Designed for mounting on 3RT2 contactors
- Terminal supports for stand-alone installation for separate mounting
See page 10/59 onwards
SIRIUS 3UG48 monitoring relays for stand-alone installation for IO-Link
- Monitoring the supply system, voltage, current, power factor and active current, residual current or speed depending on device design
- On/tripping delay time can be adjusted

See page 10/103 onwards

SIRIUS 3RS28 temperature monitoring relay

 for IO-Link- Digital device for temperature monitoring with connected sensors
- Two limit values, can be adjusted separately

See page 10/126 onwards

Actuating and indicating with IO-Link

 SIRIUS ACT 3SU1 ID key-operated switches for IO-Link- Access system and selection system for four authorization levels
- Authentication of groups and persons
- Five ID keys with different coding
- Option for individual coding via IO-Link
- For installation in enclosures or fastening on front plate
- Electronic module for ID key-operated switches must be ordered separately.
See page 13/10

SIRIUS ACT 3SU1 electronic modules for IO-Link

- Eight digital inputs and outputs possible
- DI and DQ freely selectable (programmable)
- Input and output functions parameterizable
- Connection method (push-in)
- For fastening on front plate or for installation in enclosure, see page 13/111

8WD44 IO-Link adapter element

- Up to five signaling elements can be connected using an IO-Link adapter element
- 24 V DC, diameter 70 mm
res
SIMATIC RF200 RFID system in the HF range
Products SIMATIC RF210R, SIMATIC RF220R,
SIMATIC RF240R, SIMATIC RF250R, SIMATIC RF260R
- Simple identification tasks such as reading
an ID number (UID)
- Reading of user data
- Writing of user data
- No RFID-specific programming, ideal for those new
to RFID
- Simple connection via master modules for IO-Link,
such as SIMATIC S7-1200, ET 200SP, ET 200pro,
ET 200eco PN and ET 200AL
- Use with the tried and tested ISO 15693 transponders
(MDS xxx)

IO-Link software

STEP 7 PCT (Port Configuration Tool)

Engineering software for configuring the IO-Link master modules for SIMATIC S7-1200, ET 200SP, ET 200pro, ET 200eco PN and ET 200AL

Available as a stand-alone version or integrated into STEP 7 (V5.5 SP1 and higher) and TIA (V12 and higher)

- Engineering of the IO-Link devices connected to the master
- Monitoring of the process image of the IO-Link devices
- Open interface for importing further IODDs
- Freely available for download from

Industry Online Support, see
https://support.industry.siemens.com/cs/mw/en/view/32469496

IO-Link device
function block

"Siemens IO-Link Devices" block
library

IO-Link function blocks

(IO-Link device and IO-Link master)
STEP 7 function block for easy acyclical data exchange in the user program

- Freely available for download from Industry Online Support, see https://support.industry.siemens.com/cs/ww/en/view/82981502

"Siemens IO-Link Devices" block library

This library provides function blocks and user-defined data types (UDTs) for all IO-Link devices from the Siemens portfolio. These blocks and UDTs standardize and simplify communication with IO-Link devices.

- Freely available for download from

Industry Online Support, see
https://support.industry.siemens.com/cs/ww/en/view/90529409

Industrial communication

IO-Link
Introduction

IO-Link specification

Overview

Principles of the IO-Link specification

According to the IO-Link specification, communication functions as follows:

- Transmission takes place via an unshielded 3-wire cable no more than 20 m long, of the kind normally used for standard sensors
- Digital communication from 0 to 24 V on the so-called C/Q cable
- Most of the values transmitted are measured values from the sensors
- The sensors and actuators are described by the IO Device Description (IODD)
- As a matter of principle, one IO-Link device can be connected to one IO-Link port of the master (point-to-point connection)
- The transmission rates between IO-Link master and the devices are as follows:
- Via COM1: 4800 Bd
- Via COM2: 38400 Bd
- Via COM3: 230400 Bd
- The average cycle time is 2 ms for the reading/writing of 16 data bits at a transmission rate of 38400 Bd

IO-Link protocol

The IO-Link protocol supports both the Standard IO mode (SIO) and the IO-Link communication mode (COM).

Interface hardware:

Compatible with sensors according to IEC 60947-5-2 and actuators Communication and switching possible alternately

The structure of the protocol and its message frames depends on the types of data to be transmitted.

Data types

The IO-Link specification makes a distinction between the following data types:

Process data

The process data of the devices are transferred cyclically in a data frame, with the process data width defined by the device. Process data of 0 to 32 bytes are possible per device (input and output in each case). The consistency width of the transmission is not fixed and therefore depends on the master.

Value status

Each port has a value status (PortQualifier). The value status indicates whether the process data are valid or invalid. The value status can be transferred cyclically with the process data.

Device data

Device data can be parameters, identification data and diagnostics information. Device data replacement is acyclic and in response to an inquiry from the IO-Link master. Device data can be written into the device (Write) and also read from the device (Read).

Events

When an event occurs, the device sends a signal to the master to report that an event is active. The master then reads out the event. Events can be fault messages (e.g. short circuit) and warnings/maintenance data (e.g. contamination, overheating). Fault messages are transferred from the device via the IO-Link master to the controller or HMI. The IO-Link master can also transfer events and states. Events include, for example, open circuit or communication breakdown.
Device parameters and events are sent independently of the cyclic transmission of process data. The transmissions do not affect or impair each other.

Data storage

As of specification V1.1, a data storage concept has been created for IO-Link. In this concept, the IO-Link device initiates storage of its data on a higher-level parameter server. In the event that a device is replaced, the parameter server can restore the original parameterization. It is therefore possible to replace the devices without re-parameterization.
The IO-Link master contains the parameter server. The parameter server can also be implemented centrally in the PLC or in a system server. In this case the data must be downloaded to the control system by means of the function blocks provided.

IO-Link masters

The IO-Link master is the interface to higher-level control systems. The IO-Link master presents itself to the fieldbus as a normal fieldbus node, and is integrated into the appropriate network configurator via the relevant device description (GSD file).

IO Device Description (IODD)

The IO Device Description (IODD) has been defined to provide a full, transparent description of system characteristics as far as the IO-Link device.

The IODD contains information on communication characteristics, device parameters, identification, process and diagnostics data, and is supplied by the manufacturer. The design of the IODD is the same for all devices from all manufacturers, and is always presented in the same way by the IODD Interpreter Tools. This therefore ensures that the handling is the same for all IO-Link devices, whatever the manufacturer.

New in IO-Link specification V1.1

The IO-Link specification is currently available in Version 1.1, and standardized in accordance with IEC 61131-9

Specification V1.1 offers the following new features compared with the previous specification V1.0:

- Transmission of up to 32 bytes of process data in one cycle
- Parameter server function

Overview

CM 8xIO-Link master

- Communication module for connecting up to 8 IO-Link devices (three-wire connection) or 8 standard sensors
- Can be used directly downstream of an S7-1500 CPU or distributed in ET 200MP via PROFINET or PROFIBUS
- Powerful diagnostic functions facilitate preventive maintenance to avoid plant standstills
- Simple replacement of sensors/actuators without time-consuming parameterization

Application

IO-Link makes it easy to change the parameters for manufacturing and processing different product versions and batches, even during CPU runtime, down to the sensor/actuator level. Easy, much more detailed diagnostics are also possible down to the sensor or actuator, including remote diagnostics.
The CM 8 xIO-Link enables direct connection of up to 8 IO-Link devices directly to SIMATIC S7-1500 and ET 200MP. This makes external stations unnecessary.
This results in savings on wiring, engineering and commissioning, because everything can be configured centrally with the CPU.

Design

- Fastening to the S7-1500 mounting rail with a single screw
- 40-pole front connector, optionally with screw terminals or push-in terminals
- Front flap with expandable cable compartment
- Included in the scope of supply:
- One U connector
- Front door

Function

Overview of functions

- Suitable for connecting up to 8 IO-Link devices (three-wire connection) or 8 standard sensors
- IO-Link master according to IO-Link specification V1.1
- Data transmission rates COM1 (4.8 kBd), COM2 (38.4 kBd), COM3 (230.4 kBd)
- Parameterizable diagnostics can be set for each channel
- Master backup with "IO_Link_MASTER_8" function block
- Replacement of the IO-Link device (for V1.1 devices only)
- Support for firmware updating of IO-Link devices
- Variable address range for I/O data with up to 240 byte inputs and 240 byte outputs; expansion limits:
- Max. 32 bytes of input data and 32 bytes of output data per port
- Max. 240 bytes of input data and 240 bytes of output data per module
- Port Qualifier Information (PQI)
- IO-Link port configuration with S7-PCT
- IO-Link port configuration with STEP 7 or GSD (without S7-PCT)
- Standard system functions of SIMATIC ET 200MP:
- Identification and maintenance data IMO
- Firmware update
- Unequivocal, front-side module inscription

Configuration

The IO-Link master of the S7-1500 can be conveniently configured using the graphical user interface in the free S7-Port Configuration Tool (S7-PCT, V3.5 and higher, SP1).
In addition to this configuration, commissioning without S7-PCT is also possible. In this case, the port is configured by means of either the TIA Portal or GSD file. The following port modes are supported:

- Operation in "IO-Link autostart" mode (default)
- Operation in "IO-Link manual" mode
- Operation as DI
- Deactivated

Selection and ordering data

For more information, see https://mall.industry.siemens.com/mall/en/ww/Catalog/Products/10355273.

Industrial communication

IO-Link
Masters
IO-Link master module for S7-1200 > SM 1278 4xIO-Link master

Overview

SM 1278 4xIO-Link master

Module for connecting up to four IO-Link devices in accordance with the IO-Link specification V1.1. The IO-Link parameters are configured by means of the Port Configuration Tool (PCT) with version V3.2 and higher.

Application

The SM 1278 module enables an exchange of data with up to four external IO-Link devices through one 3-wire cable each or four standard actuators or standard encoders. Control can be flexibly adapted to the communication partners using the comprehensive parameter assignment options. Since IO-Link is compatible with standard sensors, commercially available sensors compliant with IEC 61131 Type 1 can also be operated on the IO-Link master.

Design

- Expansion limits
- Cable length: max. 20 m
- Max. 32 bytes of input data and 32 bytes of output data per port
- Max. 32 bytes of input data and 32 bytes of output data per module
LED displays
- DIAG: Operating state display (green/red) of the module
- C1..C4: Port status display (green) for ports 1, 2, 3 and 4
- Q1..Q4: Channel status display (green) for ports 1, 2, 3 and 4
- F1..F4: Port error display (red) for ports 1, 2, 3 and 4

Depending on the CPU type used, up to 8 SM 1278 units can be used on one S7-1200 CPU.

Function

Supported functions

- I\&M identification data
- Firmware update
- SIO Mode (standard IO mode)
- IO-Link parameter assignment with the S7-PCT interface configuration tool, TIA Portal from V13 and an S7-1200 CPU V4.0 or higher
Supported data transmission rates
- COM1 (4.8 kBd)
- COM2 (38.4 kBd)
- COM3 (230.4 kBd)

Selection and ordering data

Accessories

For more information, see https://mall.industry.siemens.com/mall/en/ww/Catalog/Products/10231178.

Overview

CM 4xIO-Link communication module

- CM 4xIO-Link communication module Serial communication module for connecting up to four IO-Link devices in accordance with the IO-Link specification V1.0 and V1.1. The IO-Link parameters are configured by means of the Port Configuration Tool (PCT) with version V3.0 and higher.
- Time-based IO

Time-based IO ensures that signals are output with a precisely defined response time. By combination of inputs and outputs, products passing by, for example, can be measured exactly or liquids can be perfectly dosed.

- Supported data transmission rates
- COM1 (4.8 kBd)
- COM2 (38.4 kBd)
- СОМ3 (230.4 kBd)
- Expansion limits
- Cable length: max. 20 m
- Max. 32 bytes of input data and 32 bytes of output data per port
- Max. 144 bytes of input data and 128 bytes of output data per module
- ET 200SP system functions supported
- Exchange of IO-Link device parameters (V1.1 devices only) and of IO-Link master parameters without a PG including automatic backup recovery without an engineering tool by means of redundant parameter storage on the e-coding element
- Reparameterization during ongoing operation
- I\&M identification data
- Firmware update
- PROFIenergy
- Can be plugged onto type A0 BaseUnits (BU) with automatic e-coding
- LED displays
- DIAG: Operating state display (green/red) of the module
- C1..C4: Port status display (green) for ports 1, 2, 3 and 4
- Q1..Q4: Channel status display (green) for ports 1, 2, 3 and 4
- F1..F4: Port error display (red) for ports 1, 2, 3 and 4
- PWR: Supply voltage display (green)
- Informative front-side module inscription
- Plain-text marking of the module type and function class
- 2D matrix code (Article No. and serial number)
- Circuit diagram
- CM module class color coding: Silver
- Hardware and firmware version
- Complete article number
- Optional accessories
- Labeling strips
- Reference identification label
- Color-coded label with color code CC04
- Optional system-integrated shield connection

Application

- The CM 4x IO-Link communication module enables an exchange of data with up to 4 external IO-Link devices through one 3 -wire cable each.
- Control can be flexibly adapted to the communication partners using the comprehensive parameter assignment options.
- Since IO-Link is compatible with standard sensors, commercially available sensors compliant with IEC 61131 Type 1 can also be operated on the IO-Link master.

Selection and ordering data

For more information, see https://mall.industry.siemens.com/mall/en/ww/Catalog/Products/10205200.

Industrial communication

IO-Link
Masters

IO-Link master module for ET 200pro > IO-Link master modules

Overview

4 IO-Link HF electronic module

- 45-mm-wide 4 IO-Link HF electronic module
- 4 IO-Link ports according to IO-Link specification V1.1
- Port class B
- The IO-Link parameters are configured using the Port Configuration Tool (S7-PCT), version V3.4 and higher

Application

The 4 IO-Link HF electronic module enables the exchange of data with up to 4 IO-Link devices.

Since IO-Link is compatible with standard sensors, commercially available sensors compliant with IEC 61131 Type 1 can also be operated on the IO-Link master.

Design

The 4 IO-Link HF electronic module is used together with the CM IO-LINK 4 X M12 P connection module. Sensors and actuators are integrated using commercially available 3- or 5-pole M12 plugs on the CM IO-Link 4 X M12 P.

IO-Link devices (e.g. sensors) with a class A port are interconnected by means of a 3 -wire cable. IO-Link devices that require an additional supply voltage and have a class B port (e.g. actuators) are interconnected by means of a 5 -wire cable.

Selection and ordering data

	Version	SD d	Article No.	Price per PU	PU (UNIT, SET, M)	PS*	PG
6ES7147-4JD00-OAB0	4 IO-Link HF electronic module - 4 IO-Link ports acc. to IO-Link specification V1.1 - Port class B - High Feature - Channel diagnostics - Including bus module - Connection module must be ordered separately	1	6ES7147-4JD00-0AB0		1	1 unit	250

Accessories

Version	SD	Article No.	Price per PU	PU (UNIT, SET, M)	PS*	PG
d						
CM IO-LINK 4 X M12 P connection module	1	6ES7194-4CA20-0AAO		1	1 unit	250
4 M12 sockets for connection of IO-Link devices to ET 200pro 4 IO-Link HF electronic module						
Module labeling plates	1	6ES7194-4HA00-0AAO		1	500 units	250
For color coding of CM IOs in the colors white, red, blue and green; pack of 100						
M12 sealing caps	-	3RX9802-0AA00		100	10 units	42C
For protection of unused M12 terminals on ET 200pro						

For more information, see https://mall.industry.siemens.com/mall/en/ww/Catalog/Products/10304039.

Overview

ET 200eco PN IO-Link master modules

IO-Link master with 2 x M12-L coded power connector and 45-mm width

- IO-Link communication modules for connecting up to 8 IO-Link devices
- IO-Link master with $4 \times$ port class A and $4 \times$ port class B and additional 4 digital inputs
- The IO-Link specifications V1.0 and V1.1 are supported.

IO-Link master with 2 x M12-A coded power connector and 30-mm width

- IO-Link communication modules for connecting up to 4 IO-Link devices
- IO-Link master with $4 \times$ port class B
- The IO-Link specifications V1.0 and V1.1 are supported.

IO-Link master with 2 x M12-A coded power connector and

 60-mm width- IO-Link communication modules for connecting up to 4 IO-Link devices
- IO-Link master with $4 \times$ port class A and additional 8 digital inputs and 4 digital outputs
- The IO-Link specification V1.0 is supported.

Application

IO-Link enables easy integration of sensors and actuators from different manufacturers. ET200eco PN IO-Link master I/O devices enable an exchange of data with up to 4 or 8 IO-Link devices.
IO-Link devices (e.g. sensors) with a class A port are interconnected by means of a 3-wire cable. IO-Link devices that require an additional supply voltage and have a class B port (e.g. actuators) are interconnected by means of a 5 -wire cable.

Since IO-Link is compatible with standard sensors, commercially available sensors compliant with IEC 61131 Type 1 can also be operated on the IO-Link master.
With a high degree of protection, ruggedness and small dimensions, the IO-Link master I/O devices are especially wellsuited for use at the machine level in confined spaces. They have adjustable parameters and diagnostic functions and can therefore be flexibly adapted to individual process requirements.

Function

In addition to the general functions of the ET 200eco PN I/O system, the IO-Link masters according to the IO-Link specification V1.1 have some further functions:

- Supported data transmission rates of the IO-Link communication
- COM1 (4.8 kBd)
- COM2 (38.4 kBd)
- COM3 (230.4 kBd)
- Expansion limits
- Cable length to the IO-Link device: max. 20 m
- Max. 32 bytes of input data and 32 bytes of output data per IO-Link port
- Automatic backup of device parameters when the IO-Link device is replaced (V1.1 devices only)
- Reparameterization of the device during operation using a PLC function block
- Master backup using a PLC function block
- Support for firmware updates of IO-Link devices
- Configuration using a GSD file or S7-PCT

Selection and ordering data

	Version	SD d	Article No.	Price per PU		PS*	PG
\bigcirc	IO-Link Master						
	- 4 IO-L + $8 \mathrm{DI}+4 \mathrm{DO}, 24 \mathrm{~V} \mathrm{DC} / 1.3 \mathrm{~A}$; $8 \times$ M12, degree of protection IP67, enclosure width 60 mm ; for connecting up to 4 IO-Link devices according to IO-Link specification V1.0 and port class A as well as 8 digital inputs and 4 digital outputs	1	6ES7148-6JA00-0AB0		1	1 unit	257
	- 4 IO-L; $4 \times$ M12, degree of protection IP67, enclosure width 30 mm ; for connecting up to 4 IO-Link devices according to IO-Link specifications V1.0 and V1.1 and port class B	1	6ES7148-6JD00-0AB0		1	1 unit	257
6ES7148-6J.00-0.B0	- 8 IO-L + 4 DI 24 V DC; $8 \times \mathrm{M} 12$, degree of protection IP67, enclosure width 45 mm ; for connecting up to 8 IO-Link devices according to IO-Link specifications V1.0 and V1.1, port class $\mathrm{A}+4 \times$ port class B as well as 4 digital inputs	1	6ES7148-6JG00-0BB0		1	1 unit	257

For more information, see https://mall.industry.siemens.com/mall/en/ww/Catalog/Products/10370454.

Overview

CM IO-Link communication module

- CM IO-Link communication module, 30 mm wide
- For connecting up to 4 IO-Link devices in accordance with the IO-Link specifications V1.0 and V1.1 and port class B
- The IO-Link parameters are configured by means of the S7-PCT Port Configuration Tool with version V3.2 and higher.

Application

The CM IO-Link communication module supports data exchange between up to four IO-Link devices. IO-Link devices (e.g. sensors) with a class A port are interconnected by means of a 3-wire cable. IO-Link devices that require an additional supply voltage and have a class B port (e.g. actuators) are interconnected by means of a 5 -wire cable.
Since IO-Link is compatible with standard sensors, commercially available sensors compliant with IEC 61131 Type 1 can also be operated on the IO-Link master.

The 30-mm-wide I/O modules are ideally suited for use in extremely confined spaces. They have adjustable parameters and diagnostic functions and can therefore be flexibly adapted to individual process requirements.
The following IO-Link masters are available:

- CM 4xIO-Link communication modules, 4XM12

Design

The I/O modules have a screw mounting hole at the front and side, and can be mounted in any position. As a result, they are extremely flexible to install on either a level surface or on aluminum mounting rails using sliding blocks.

The CM IO-Link communication module features:

- A backplane bus connection (Ethernet connection) with M8 connection technology for connection to an interface module or other I/O modules
- A power supply connection with M8 connection technology with loop-through
- LED display for port status
- LED display for channel status in SIO mode
- LED display for module status (DIAG)
- LED display for load voltage 2L+ (PWR)
- Labeling plates for channel, module and slot identification
- Integrated cable tie holder
- Meaningful module inscription on front panel:
- Plain text marking of module type
- Interface marking
- LED label
- Meaningful module inscription on side panel:
- Article number, function level and FW version
- 2D matrix code (Article No. and serial number)
- Pin assignments of all interfaces

Labeling plates for channel, module and slot identification are supplied with the modules. These labeling plates can be inscribed using commercially available inscription machines.

Function

- IO-Link master according to IO-Link specification V1.1
- 4 ports, class B type
- Supported data transmission rates
- COM1 (4.8 kBd)
- COM2 (38.4 kBd)
- COM3 (230.4 kBd)
- Expansion limits
- Cable length: max. 20 m
- Max. 32 bytes of input data and 32 bytes of output data per port
- Max. 32 bytes of input data and 32 bytes of output data per module
- Automatic backup of device parameters when the IO-Link device is replaced (V1.1 devices only)
- Reparameterization during ongoing operation
- Standardized display and diagnostics concept:
- Port status display (port activated or deactivated, green LED)
- Channel status display for signal state in SIO mode (green LED)
- Module status display (DIAG, red/green LED)
- Display for monitoring the load voltage 2L+ (PWR, green LED)
- Supported functions:
- Detailed module diagnostics and diagnostic interrupt
- Identification and maintenance data IMO ... IM3
- Firmware update
- PROFIenergy

Selection and ordering data

	Version		Article No.	Price per PU	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*	PG
	d						
	CM IO-Link	1	6ES7147-5JD00-0BA0		1	1 unit	254
	CM 4 IO-LIN in accordanc V1.1 and po						

For more information, see https://mall.industry.siemens.com/mall/en/ww/Catalog/Products/10233997.

Overview

IO-Link input modules
Using IO-Link technology, it is basically possible to connect standard sensors to IO-Link masters. However, connecting standard sensors directly to the IO-Link master does not exploit the full potential of IO-Link.

The solution lies in the technology of the IO-Link modules. Their use is a more economically attractive solution in comparison to the direct connection of a sensor.
The IO-Link input module technology enhances IO-Link via a pure point-to-point cable connection towards decentralized structures. The maximum cable length of an IO-Link connection between an IO-Link module and an IO-Link master is 20 m .
The use of sensor boxes with accordingly complex and error-prone wiring is no longer necessary.

Transmission of parameter and diagnostic signals

The IO-Link input modules also offer the possibility of transmitting parameters and diagnostic signals. This enables for example the inputs of modules to be parameterized as NC contacts or NO contacts through IO-Link. An overload or short circuit in the sensor supply is signaled to the control system through the IO-Link master.

M8 and M12 terminals

M8 and M12 terminals are available for connecting the sensors. Connection to the IO-Link master is made using a standard M12 connecting cable.

Benefits

Benefits of using IO-Link input modules:

- Economical use of innovative IO-Link technology also for binary sensors
- Optimum use of all ports of the IO-Link master
- Connection of several binary sensors/actuators to one port of the IO-Link master, hence low-cost connection also of binary sensors/actuators to the control system through IO-Link
- Reduction of digital input modules in the peripheral station
- Use of parameters also for binary sensors (e.g. NC contacts, NO contacts and input delay can be parameterized)
- Reduction of cabling and hence less risk of wiring errors by dispensing with sensor boxes
- Expansion toward distributed structures using pure point-to-point wiring
- Easy and elegant integration of sensors within a radius of 20 m around an IO-Link master, e.g. in an ET 200 station
- Possibility of transmitting parameter and diagnostic signals (e.g. sensor supply overload)
- Can also be used in harsh ambient conditions thanks to a very compact design and degree of protection IP67

Application

IO-Link input modules are particularly used where sensor boxes had previously been used for the connection of binary sensors.
Application example:
Replacement of sensor boxes by using IO-Link input modules

[^3]

Industrial communication
IO-Link
Input modules

K20 IO-Link modules

Selection and ordering data

		Type	Pin assignment	Connection	SD d	Article No.	Price per PU		PS*	PG
-	,	K20 IO-Link modules								
0	\because	- 4 inputs	Y	M12	5	3RK5010-0BA10-0AAO		1	1 unit	42C
	\because	- 8 inputs	Standard	M8	2	3RK5010-0CA00-0AAO		1	1 unit	42 C
9	\%									
8	\square									
3RK5010-	\because									
$\begin{aligned} & \text { OBA10- } \\ & \text { OAAO } \end{aligned}$	3RK5010-OCA00- OAAO									

Accessories

	Price groups PG 41B, 41E, 41H, 42F
3/2	Introduction
	Power contactors for switching motors
3/8	General data
3/17	SIRIUS 3RT contactors, 3-pole up to 250 kW New
	Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays
3/77	- General data
3/89	- Auxiliary switches, instantaneous
3/102	- Auxiliary switches, delayed
3/104	- Surge suppressors
3/106	- Modules for contactor control
3/111	- Link modules
3/116	- Connection modules/adapters
3/119	- Covers
3/120	- Miscellaneous accessories
	Spare parts for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays
3/123	- Solenoid coils
3/126	- Contacts and arc chutes
3/127	SIRIUS 3RT12 and 3TF6 vacuum contactors
3/139	Accessories and spare parts for SIRIUS 3RT12 and 3TF6 vacuum contactors
3/143	3TG10 power relays/miniature contactors
	Reversing contactor assemblies
3/147	SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW
3/158	Reversing contactor assemblies consisting of SIRIUS 3RT1 contactors, up to 250 kW

Accessories for Sirius 3RT contactors and SIRIUS 3RH2 contactor relays

3/89 - Auxiliary switches, instantaneous

3/102
Auxiliary switches, delayed

- Surge suppressors

3/111 - Link modules
3/116
Connection modules/adapters
3/119
Covers
Spare parts for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays
3/123
Solenoid coils
3/126
SIRIUS 3RT12 and 3TF6 vacuum contactors 3RT12 and 31 3TG10 power relays/miniature contactors

Reversing contactor assemblies assemblies, up to 55 kW up to 250 kW

Contactor assemblies for star-delta (wye-delta) starting
3/162 SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW
3/175 Contactor assemblies for star-delta (wye-delta) starting consisting of SIRIUS 3RT contactors, up to 500 kW

Switching devices - Contactors and contactor assemblies - for switching motors

Introduction
Overview

Overview of the 3RT and 3TF contactors

Switching devices - Contactors and contactor assemblies - for switching motors

More information	Conversion tool for article numbers, see
Homepage, see www.siemens.com/sirius	www.siemens.com/sirius/conversion-tool
Industry Mall, see www.siemens.com/product?3RT_3TK_3TC	TIA Selection Tool Cloud (TST Cloud), see
	https://www.siemens.com/tstcloud/?node=Contactor

Note:

Safety characteristics for contactors,
see "Standards and approvals", page 16/7.

Introduction

Note:
Safety characteristics for contactors,
see "Standards and approvals", page 16/7.

Switching devices - Contactors and contactor assemblies - for switching motors

Introduction

Size Type	$\begin{array}{\|l\|} 14 \\ \text { 3TF6 } \end{array}$			
3TF68/3TF69 vacuum contactors				
Type	3TF68 (p. 3/137, 3/138)		3TF69 (p. 3/137, 3/138)	
AC-3				
$I_{\text {e }} / \mathrm{AC}-3 / 400 \mathrm{~V}$ A	630		820	
400 V kW 230 V kW 690 V kW 1000 V kW	$\begin{array}{\|l\|} \hline 335 \\ 200 \\ 600 \\ 600 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 450 \\ 260 \\ 800 \\ 800 \\ \hline \end{array}$	
AC-4 (at $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)				
400 V kW 400 V kW $(200000$ operating cycles)	$\left\lvert\, \begin{array}{\|l\|} 355 \\ 168 \end{array}\right.$		$\begin{array}{\|l\|l\|} \hline 400 \\ 191 \end{array}$	
AC-1 ($40{ }^{\circ} \mathrm{C}, \leq 690 \mathrm{~V}$)				
$I_{\text {e }}$ A	700		910	
Accessories for contactors				
Auxiliary switches - Lateral	3TY7561			(p. 3/139)
Surge suppressors	3 TX7572			(p. 3/140)
Terminal covers	3TX7686, 3TX7696			(p. 3/140)
3RB2 overload relays				
3RB electronic overload relays - For standard applications - For High-Feature applications	3RB2066, $55 \ldots 250 \mathrm{~A}$ 3RB2163 or $160 \ldots 630 \mathrm{~A}$ 3RB22, 3RB23 and 3RB24 with current measuring module 3RB2966-2WH2 63 ... 630 A	(p. 7/123, 7/124) (p. 7/125) (p. 7/134, 7/142) (p. 7/146)	3RB22, 3RB23 and 3RB24 with current measuring module 3RB2906-2.G1 with 3UF series transformer up to 820 A $63 \ldots 820 \text { A }$	$\begin{array}{r} (p .7 / 134,7 / 142) \\ (p .7 / 146) \end{array}$
3RV10 molded case motor starter protectors				
Molded case motor starter protectors	3RV1083 $252 \ldots 630$ A			(p. 7/81)
Reversing contactor assemblies				
$\begin{array}{ll}\text { Complete units } & \text { Type } \\ 400 \mathrm{~V} & \text { kW }\end{array}$	--			
	335			
Assembly kits/wiring modules	3TX7680-1A			(Industry Mall)
Mechanical interlocks	3TX7686-1A			(Industry Mall)
Contactor assemblies for star-delta (wye-delta) starting				
Complete units Type	--			
400 V kW	630			
Assembly kits/wiring modules	3TX7680-1B			(Industry Mall)
Note:				
Safety characteristics for contactors, see "Standards and approvals", page 16/7.				

Switching devices - Contactors and contactor assemblies - for switching motors

Connection methods

The contactors are available with screw terminals (box terminals or flat connectors) or with spring-loaded terminals.

The 3TG10 power relays/miniature contactors are available with screw terminals or flat connectors

Use of 3RT contactors, 3RT and 3TF vacuum contactors, reversing contactor assemblies, and contactor assemblies for star-delta (wye-delta) starting with IE3/IE4 motors

Note:
For the use of 3RT contactors, 3RT and 3TF vacuum contactors, reversing contactor assemblies and contactor assemblies for star-delta (wye-delta) starting in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.

For more information, see page 1/8.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

General data

Overview

The SIRIUS family of controls

The SIRIUS modular system with its components for the switching, starting, protection and monitoring of motors and industrial systems stands for the fast, flexible and space-saving construction of control cabinets.

3RT2.1 contactors • Size S00 with mountable accessories
The figure shows the version with screw terminals

Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

General data
3RT2.2 contactors • Size S0 with mountable accessories
The figure shows the version with screw terminals

Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

General data

3RT2.3 contactors . Size S2 with mountable accessories

The figure shows the version with screw terminals

Accessories and spare parts, see pages 3/77 to 3/126.

3RT2.4 contactors • Size S3 with mountable accessories

The figure shows the version with screw terminals

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

General data

3RT105 and 3RT145 contactors . Size S6 with mountable accessories

Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

General data
3RT106 and 3RT146 contactors . Size S10 with mountable accessories

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

General data

3RT126 vacuum contactors. Size S10 with mountable accessories

(1) 3 RT126 vacuum contactor, size S10 (version without withdrawable coil)

Can be mounted onto side of contactor
(2) 3RH192: 2-pole auxiliary switch

Can be inserted in top of contactor
(3) 3RT1966-5A.3.: Withdrawable coil, standard operating mechanism
(4) 3RT1966-5N.3.: Withdrawable coil, solid-state operating mechanism

Can be plugged onto top of contactor operating mechanisms
(5) 3RT1956-1C: Surge suppressor (RC element)

Can be mounted at bottom on busbars
(6) 3RT1966-1PV.: Main current path surge suppression module

Can be mounted onto the top or bottom on busbars or box terminals
(7) 3RT1966-4G: Box terminal block
(8) 3 TX6546-3B: Terminal cover (can be screwed on), covers one busbar connection
(9) 3RT1966-4EA1: Terminal cover for busbar connection and on box terminal
(10) 3RT1966-4EA3: Terminal cover for busbar connection
(11) 3RT1966-4EA2: Terminal cover on box terminal

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

General data
3RT107 and 3RT147 contactors . Size S12 with mountable accessories

Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

General data

3RT127 vacuum contactors. Size S12 with mountable accessories

Can be mounted onto the side of contactor
(2) 3RH192: 2-pole auxiliary switch

Can be inserted in top of contactors
(3) 3RT1975-5A.3.: Withdrawable coil, standard operating mechanism
(4) 3RT1975-5N.3.: Withdrawable coil, solid-state operating mechanism

Can be plugged onto the top of contactor operating mechanisms
(5) 3RT1956-1C: Surge suppressor (RC element)

Can be mounted at bottom on busbars
(6) 3RT1966-1PV.: Main current path surge suppression module

Can be mounted at the top or bottom on busbars or box terminals
(7) 3RT1966-4G: Box terminal block
(8) 3TX6546-3B: Terminal cover (can be screwed on), covers one busbar connection
(9) 3RT1956-4EA1: Terminal cover for busbar connection and on box terminal
(10) 3RT1966-4EA3: Terminal cover for busbar connection
(11) 3RT1966-4EA2: Terminal cover on box terminal

Overview

Version	Size	Ratings of three-phase motors at 50 Hz and 400 V kW	Connection Screw terminals	methods Springloaded terminals	Type	Page
Power contactors for switching motors						
AC operation						
Basic unit - With permanently mounted auxiliary switch - With permanently mounted auxiliary switch and varistor plugged into the front	S00	3... 7.5	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	3RT201.-.A.O. 3RT201.-.AP04-3MAO 3RT201.-.CP04-3MAO	$\begin{aligned} & 3 / 55 \\ & 3 / 55 \\ & 3 / 55 \end{aligned}$
Basic unit - With removable auxiliary switch - With permanently mounted auxiliary switch and varistor plugged in	SO	$4 \ldots 18.5$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \text { 3RT202.-. A. } 00 \\ & \text { 3RT202.-. A. } 04 \\ & \text { 3RT202.-.CL24-3MA0 } \end{aligned}$	$\begin{aligned} & 3 / 56 \\ & 3 / 57 \\ & 3 / 57 \end{aligned}$
Basic unit - With removable auxiliary switch - With permanently mounted auxiliary switch and integrated coil circuit	S2	18.5 ... 37	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{gathered} \hline \checkmark \\ -- \\ \checkmark \end{gathered}$	$\begin{aligned} & \text { 3RT203.-.A. } 00 \\ & \text { 3RT203.-1A. } 04 \\ & \text { 3RT203.-.CL24-3MA0 } \end{aligned}$	$\begin{aligned} & 3 / 58 \\ & 3 / 58 \\ & 3 / 58 \end{aligned}$
Basic unit - With removable auxiliary switch - With permanently mounted auxiliary switch and integrated coil circuit	S3	$37 . . .55$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	\checkmark	3RT20.-.A. 00 3RT204.-1A. 04 3RT204.-1CL24-3MAO	$\begin{aligned} & 3 / 59 \\ & 3 / 59 \\ & 3 / 59 \end{aligned}$
DC operation						
Basic unit - With integrated coil circuit - With permanently mounted auxiliary switch - With permanently mounted auxiliary switch and integrated coil circuit - With voltage tap-off	S00	3... 7.5	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \text { 3RT201.-.B.4. } \\ & \text { 3RT201.-..B4. } \\ & \text { 3RT201.-.BB44-3MA0 } \\ & \text { 3RT201.-.FB44-3MA0 } \\ & \text { 3RT201.-.BB4.-0CC0 } \end{aligned}$	$\begin{aligned} & 3 / 60 \\ & 3 / 60 \\ & 3 / 61 \\ & 3 / 61 \\ & 3 / 61 \end{aligned}$
Basic unit - With coil circuit plugged into front - With removable auxiliary switch - With permanently mounted auxiliary switch and integrated coil circuit - With voltage tap-off	SO	$4 \ldots 18.5$	$\begin{aligned} & \hline \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \hline \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \text { 3RT202.-.B. } 40 \\ & \text { 3RT202.-..B40 } \\ & \text { 3RT202.-.BB44 } \\ & \text { 3RT202.-..B44-3MA0 } \\ & \text { 3RT202.-.BB40-0CC0 } \end{aligned}$	$\begin{aligned} & \hline 3 / 64 \\ & 3 / 64 \\ & 3 / 64 \\ & 3 / 65 \\ & 3 / 65 \end{aligned}$

DC operation for direct control by PLC (coupling contactors)

Basic unit	SOO	3... 5.5	\checkmark	\checkmark	3RT201.-..B4.	3/62
Basic unit with integrated coil circuit	S00	3 ... 5.5	\checkmark	\checkmark	3RT201.-..B4.	3/62, 3/63
	SO	4 ... 15	\checkmark	\checkmark	3RT202.-.KB40	3/66
	S2	18.5 ... 37	\checkmark	\checkmark	3RT203.-.KB40	3/67
	S3	37 and 45	\checkmark	\checkmark	3RT204.-.KB40	3/67
AC/DC operation (50/60 Hz AC or DC)						
Basic unit with integrated coil circuit	So	5.5 ... 18.5	\checkmark	\checkmark	3RT202.-.N. 30	3/68
Basic unit with integrated coil circuit	S2	18.5 ... 37	\checkmark	\checkmark	3RT203.-. N. 30	3/69
- With removable auxiliary switch			\checkmark	--	3RT203.-1N. 34	3/69
- With permanently mounted auxiliary switch			\checkmark	\checkmark	3RT203.-.NB34-3MA0	3/69
- With voltage tap-off			\checkmark	\checkmark	3RT203.-.NB30-0CC0	3/69
- With fail-safe 24 V DC control signal input for safety-related applications up to SIL CL 3			\checkmark		3RT203.-.S.30	3/70
Basic unit with integrated coil circuit - With removable auxiliary switch - With permanently mounted auxiliary switch - With voltage tap-off - With fail-safe 24 V DC control signal input for safety-related applications up to SIL CL 3	S3	$37 . . .55$	\checkmark	\checkmark	3RT204.-.N. 30	3/71
			\checkmark	--	3RT204.-1N. 34	3/71
			\checkmark	\checkmark	3RT204.-.NB34-3MA0	3/71
			\checkmark	\checkmark	3RT204.-.NB30-0CC0	3/71
			\checkmark	\checkmark	3RT204.-.S. 30	3/70
Basic unit with integrated coil circuit						
- Standard operating mechanism with economy circuit for AC and DC operation	S6 ... S12	$55 . .250$	${ }^{1)}$	\checkmark	3RT10..-.A. 36	3/72
- Solid-state operating mechanism with the option of control via a separate 24 V DC control signal input - Fail-safe control signal input			1)	--	3RT10..-S. 36	3/73
for safety-related applications up to SIL CL 3	S6 ... S12	55 ... 250		--	3RT10..-.S. 36	
- Standard control signal input			$\mathbf{V}_{1}^{1)}$	\checkmark	$\text { 3RT10..-.N. } 36$	$3 / 74$
- Standard control signal input, with remaining lifetime indicator (RLT)			${ }^{1 /}$	--	3RT10..-.P. 35	3/74

-- Version not possible
\checkmark Version possible

[^4]Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Contactors with screw terminals: 3RT2 (sizes S00 to S3) and 3RT1 (sizes S6 to S12)

3RT contactors, sizes S00 to S12

Our power range:

- Contactors for switching motors:
- Size S00: 3RT201 up to 7.5 kW
- Size S0: 3RT202 up to 18.5 kW
- Size S2: 3RT203 up to 37 kW
- Size S3: 3RT204 up to 55 kW
- Sizes S6 to S12: 3RT10 up to 250 kW
- For vacuum contactors for switching motors, see page 3/127 onwards
- Sizes S10 and S12: 3RT12 up to 250 kW
- Size 14: 3TF6 up to 450 kW

Standards

IEC/EN 60947-1, IEC/EN 60947-4-1, IEC/EN 60947-5-1 (auxiliary switches)

Ambient conditions

If the devices are used in ambient conditions which deviate from common industrial conditions (IEC 60721-3-3 "Stationary Use, Weather-Protected"), information must be obtained about possible restrictions with regard to the reliability and endurance of the device and possible protective measures. In this case contact our Technical Support:
www.siemens.com/support-request.

SIRIUS 3RT contactors, 3-pole up to 250 kW

Auxiliary contact complement

- Size S00: an auxiliary contact is integrated in the basic device.
- Sizes S0 to S3: the basic units contain two integrated auxiliary contacts ($1 \mathrm{NO}+1 \mathrm{NC}$).
All basic units, with the exception of coupling contactors in sizes S00 and SO, can be expanded using auxiliary switches, see page 3/89 for the permitted selection of auxiliary switches.
- Sizes S6 to S12: These contactors are supplied with two laterally mounted auxiliary switches. The fitting of auxiliary switches is possible on the front and on the side (the 3RT12 vacuum contactor is an exception: only lateral fitting of auxiliary switches is possible here).
For detailed information about the fitting of auxiliary switches, see pages 3/89 to 3/94.

Contact reliability

If voltages $\leq 110 \mathrm{~V}$ and currents $\leq 100 \mathrm{~mA}$ are to be switched, the auxiliary contacts of the 3RT contactors or 3RH contactor relays should be used as they guarantee a high level of contact reliability.
These auxiliary contacts are particularly suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage $\geq 17 \mathrm{~V}$.

Connection methods

Main circuit

- Sizes S00 and S0: screw or spring-loaded terminals, springloaded terminals with convenient plug-in design for device connectors
- Sizes S2 and S3: screw terminals with box terminal; direct connection to the connecting bar possible with cable lugs for S 3 when the box terminal is removed.
- Sizes S 6 to S 12 : screw terminals with connecting bars that the cables can be connected to using either cable lugs or flexible or rigid busbars. Alternatively, box terminals are available as accessories.

Auxiliary/control circuit

- Sizes S00 to S12: Screw or spring-loaded terminals

Electromagnetic compatibility (EMC)

The 3RT contactors fulfill the requirements for environment category A.
Note:
When the contactors are used in an environment with frequency converters, the configuration notes in the Equipment Manual must be observed, see "More information", page 3/23.

Short-circuit protection

Short-circuit protection of contactors without overload relays, see "Technical specifications":

- For 3RT2 contactors, see pages $3 / 28,3 / 34,3 / 38$ and $3 / 43$
- For 3RT1 contactors, see page 3/48

For short-circuit protection of contactors with overload relays or of load feeders, refer to the Configuration Manuals, see "More information" on page 3/23.

For fuseless assembly of motor feeders consisting of 3RV2 motor starter protector and 3RT2 contactor, selection aids are available, see "SIRIUS 3RA2 load feeders", page 8/4 onwards.

Motor protection

3RT2 contactors
For protection against overload, 3RU2 thermal overload relays (see page 7/98 onwards) or 3RB3 electronic overload relays (see page 7/111 onwards) can be mounted onto the 3RT2 contactors.

3RT1 contactors

For protection against overload, 3RB2 electronic overload relays (see page 7/123 onwards) can be mounted onto the 3RT1 contactors.

Plant and application monitoring

For monitoring and measuring in the application, 3RR2 monitoring relays can be mounted onto the 3RT2 contactors (see page 10/51).

Ratings of three-phase motors

The quoted rating (in kW) refers to the output power on the motor shaft (according to the nameplate).
The power rating specifications of the contactors in kW (in accordance with IEC 60947-4-1, Table G) are guide values for 4-pole standard motors at 50 Hz AC and specified voltage (e.g. 400 V). The actual starting and rated data of the motor to be switched must be considered when selecting the units.
The motor current, motor protection device and the permissible contactor current according to the utilization category must be aligned with each other.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Surge suppression

3RT contactors supplied without a coil circuit can be retrofitted with RC elements, varistors, diodes or diode assemblies (assembly of diode and Zener diode for short break times) for damping opening surges in the coil, see page 3/104 onwards.

- Size SOO: the surge suppressors are plugged onto the front of the contactors here. Space is provided for them next to a snap-on auxiliary switch.
- Sizes SO and S2: The surge suppressors (varistors, RC elements or diode combinations) can be plugged into the front of the contactors.
- Size S3: The varistors and diode combinations are plugged into the front of the contactors. The RC element is plugged into the two recesses on the front of the contactor to the left of the terminal block for the auxiliary switches.
- Sizes S6 to S12: Exchangeable operating mechanisms with integrated coil circuit (varistor)

Note:

The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (for details, see the relevant manual \rightarrow "More information", page 3/23).

Contactors with voltage tap-off

3RT2 contactors
The size S00 to S3 contactors with voltage tap-off are special versions for mounting the SIRIUS 3RA27 function modules for connection to the control system via IO-Link or AS-Interface (see page 3/81 onwards).
Without a function module, these contactors can be used like the standard versions.

For more information on IO-Link and AS-Interface, see "Industrial communication", page 2/1 onwards.

Operating mechanism types

3RT2 contactors

3RT2 contactors are available as standard versions with AC or DC operating mechanisms or as versions with a wide-range solid-state operating mechanism and a universal actuating voltage (AC or DC operation possible).
In addition, for sizes S2 and S3, variants with solid-state operating mechanism for AC or DC operation with a fail-safe PLC input are available.
Control takes place via the control supply voltage connection A1-A2 with varying operating ranges
(see relevant product data sheet for further details).
DC coupling contactors with reduced power consumption are also ideally suited for connection to the controller.

3RT1 contactors

The following control and/or operating mechanism versions are available in sizes S 6 to S12:

- Standard operating mechanism with economy circuit for AC and DC operation (switchover from closing coil to holding coil)
- Solid-state operating mechanisms Overvoltage damping of the operating mechanism coil is already integrated in the electronics for contactors with solidstate operating mechanisms. The operating mechanisms are powered via a supply voltage with an operating range from 0.8 to $1.1 \times U_{\mathrm{S}}$, optionally also controlled depending on the chosen mode of operation. Alternatively, control is via the separate 24 V DC control signal input. Various rated voltage ranges for $\mathrm{AC} / \mathrm{DC}$ control are available.

The following versions are available:

- With two operating modes: Direct control or via PLC input
- As above, but additionally with remaining lifetime indicator (RLT)
- With fail-safe PLC input for simplification of safety applications (without mode of operation selection)

Solenoid coils/drive units

3RT2 contactors
Coil replacement is possible for sizes S0 to S3.

3RT1 contactors

The operating mechanisms for 3RT10..-.A/-.N/-.P contactors are removable and can be replaced simply by unlocking and pulling them out.
NOTICE: Removal or changing of the operating mechanism is not permitted for 3RT10..-.S contactors with fail-safe control.

Contactors in safety-related applications

Contactors are a significant part of safety-related applications. They are generally the actuators that perform the switching operation leading to the safe disconnection of the corresponding application or system.
Contactors with mirror contacts according to IEC 60947-4-1 are generally required for use in safety-related applications. Most of our contactors meet this requirement; a corresponding note can be found in the technical product data sheet.

Contactors with increased tamper protection

Increased tamper protection is ensured either by using our contactor versions with factory-installed, permanently mounted auxiliary switches protected against mechanical external actuation (e.g. 3RT2........-3MA0 or 3RT1...-....-3PA0 contactors), or by using the 3RT2916-4MA10 or 3RT1926-4MA10 sealable cover as an accessory (see page $3 / 119$).

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Connection of contactors to fail-safe control modules

While contactors with smaller power ratings can be connected directly to the outputs of fail-safe controllers, implementing safety-related applications with standard contactors with higher power is much more complicated and elaborate because of the necessary coupling links.

Due to their fail-safe control input, special contactors provide a much simpler way of doing this:

- 3RT20...-S contactors in sizes S2 and S3
- 3RT10..-. S contactors in sizes S6 to S12

For more information on safety systems, see page 11/1 onwards.

Example for SIL 2 and SIL 3 / PLe application - previously:

Application with safety-related disconnection with standard contactors using the example of a 3RT105 contactor
Example for SIL 3 / PL e (left-hand side) and SIL 2 / PL c (right-hand side) application - new:

[^5]
Switching devices－Contactors and contactor assemblies－for switching motors Power contactors for switching motors

SIRIUS 3RT contactors，3－pole up to 250 kW

Contactors for special applications

－SIRIUS 3RT． 4 contactors for low or non－inductive loads （AC－1），3－pole，see page 4／6 onwards
－SIRIUS 3RT20 and 3RT10 contactors with an extended application range，3－pole（for rail applications）， see page 4／55 onwards

Article No．scheme

Product versions		Article number					
SIRIUS power contactors		3RT2	$\square \square$	$\square-\square$	$\square \square$		$\square \square \square \square$
Device type	e．g． $0=3$－pole motor contactor		\square				
Size of the contactor	e．g． $4=$ S3		\square				
Rating dependent on size	e．g． $5=37 \mathrm{~kW}$ for S3			\square			
Type of electrical connection	e．g． 1 ＝Screw terminals（main and auxiliary circuits）			\square			
Operating range／solenoid coil circuit	e．g． $\mathrm{A}=\mathrm{AC}$ standard／without coil circuit				，		
Rated control supply voltage	e．g．P0＝ $230 \mathrm{VAC}, 50 \mathrm{~Hz}$				$\square \square$		
Auxiliary switches	e．g． $0=$ for S3： $1 \mathrm{NO}+1 \mathrm{NC}$ integrated					\square	
Special version		ㅁロロロ					
Example		3RT2 $045-1$ A P O 0					

Note：

The Article No．scheme shows an overview of product versions for better understanding of the logic behind the article numbers．

For your orders，please use the article numbers quoted in the selection and ordering data

Switching devices - Contactors and contactor assemblies - for switching motors

Power contactors for switching motors
SIRIUS 3RT contactors, 3-pole up to 250 kW
Technical specifications
More information
Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/16134/td
System Manual for modular system, see

FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16134/faq
https://support. industry. siemens.com/cs/ww/en/view/60311318
Equipment Manual, see
https://support.industry.siemens.com/cs/ww/en/view/60306557
Application Manual for controls with IE3/IE4 motors, see
https://support. industry.siemens.com/cs/ww/en/view/94770820
Configuration Manual for load feeders, see

Type	Contactors		
	3RT2		3RT1
Size	S00 to S2	S3	S6 to S12

Rated data of the auxiliary contacts

According to IEC/EN 60947-5-1
Data apply to integrated auxiliary contacts and conventional contacts in the auxiliary switches

Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	690	$\begin{aligned} & 1000 \\ & \text { (3RT20..-0CCO: 690) } \end{aligned}$	--
- For laterally mountable auxiliary switches	V	690	690	500
- For front auxiliary switches	V	690	690	690

Conventional thermal current $I_{\text {th }}=\quad$ A 10
rated operational current $I_{\mathrm{e}} / \mathrm{AC}-12$

AC load

Rated operational current $I_{\mathrm{e}} / \mathrm{AC}-15 / \mathrm{AC}-14$

- At rated operational voltage U_{e}

Up to 230 V	A	$10^{1)}$	6	6
400 V	A	3	3	
500 V	A	2		2
690 V	A	1		$1^{2)}$

DC load

Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-12$

- At rated operational voltage U_{e}

24 V	A	10	10
60 V	A	6	6
110 V	A	3	3
125 V	A	2	2
220 V	A	1	1
440 V	A	0.3	0.3
600 V	A	0.15	0.15^{2}

Rated operational current $I_{\mathrm{e}} / \mathrm{DC}$-13

- At rated operational voltage U_{e}

24 V	A	$10^{1)}$	$10^{3)}$
60 V	A	2	2
110 V	A	1	1
125 V	A	0.9	0.9
220 V	A	0.3	0.3
440 V	A	0.14	0.14
600 V	A	0.1	0.15^{2}

Contact reliability at $17 \mathrm{~V}, 1 \mathrm{~mA}$

Acc. to IEC/EN 60947-5-4
Frequency of contact faults $<10^{-8}$ i.e. <1 fault per 100 million operating cycles

[^6]3) For laterally mountable auxiliary switches, DC-13/at 24 V : Max. 6 A

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Type
Size
Contact endurance of the auxiliary contacts
It is assumed that the operating mechanisms are switched randomly,
i.e. not synchronized with the phase angle of the supply system.
The contact endurance is mainly dependent on the breaking current.

3RT contactors
S00 to S12

Sizes S00 to S3

Diagram legend:

$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current
The characteristic curves apply to:

- integrated auxiliary contacts on 3RT2.
- 3RH2911, 3RH2921 auxiliary switches ${ }^{1)}$

Sizes S6 to S12

Diagram legend:
$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current
The characteristic curves apply to:

- Integrated auxiliary contacts on 3RT10
- 3RH1911, 3RH1921 auxiliary switches ${ }^{3)}$

1) $3 R H 22,3 R H 29,3 R T 2 \ldots-\ldots .4,3 R T 2 \ldots-\ldots .6: I_{\mathrm{e}}=6 \mathrm{~A}$ at AC-15/AC-14 and DC-13, 3RT2.4: $I_{\mathrm{e}}=6 \mathrm{~A}$ at AC-15/AC-14.
2) For laterally mountable auxiliary switches, DC-13/at 24 V : Max. 6 A
3) With laterally mountable auxiliary switches, the currents for rated operational voltages up to 500 V apply.

Type	3RT2 contactors
Size	S00 and So
Coitact endiance	

Size
ntact endurance
of the main contacts
The characteristic curves show the contact endurance of the contactors when switching low inductive or non-inductive AC loads (AC-1) and motor-driven loads (AC-3) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
The rated operational current I_{e} complies with utilization category AC-4 (breaking 6 times the rated operational current) and is intended for a contact endurance of approximately 200000 operating cycles.
If a shorter contact endurance is sufficient, the rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4$ can be increased.

If the contacts are used for mixed operation, i.e. normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category AC-4), the contact endurance can be calculated approximately from the following equation:

$$
X=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}
$$

Characters in the equation:
X Contact endurance for mixed operation in operating cycles
A Contact endurance for normal operation ($I_{\mathrm{a}}=I_{\mathrm{e}}$) in operating cycles
B Contact endurance for inching ($I_{\mathrm{a}}=$ multiple of I_{e}) in operating cycles
C Inching operations as a percentage of total switching operations

Size S00
Operating cycles at

Size SO
Operating cycles at

Switching devices - Contactors and contactor assemblies - for switching motors
 Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Type	3RT contactors
Size	S2 to $\mathbf{S 1 2}$
Contact endurance of main contacts (continued)	

Size S2

Size S3

Sizes S6 to S12

Mechanical endurance

ycles
cycles
ing
cycles
acc. to IEC 60947-1, Appendix N simultaneously with an NO main contact.

- 3RT2.1 (removable auxiliary switch)
and the mounted auxiliary switch according to IEC 60947-4-1 Appendix F No mirror contact for size SOO

Ambient temperature

-During operation
Degree of protection IP on the front acc. to IEC 60529
IP20 (screw terminals and spring-loaded terminals)
Touch protection on the front acc. to IEC 60529
the front
7.3/5 and 4.7/10

- Rectangular pulse

AC
g/ms
g/ms $\quad 10.5 / 5$ and $6.6 / 10$
11.4/5 and 7.3/10
11.4/5 and 7.3/10

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Power consumption of the solenoid coils

(for cold coil and $1.0 \times U_{\mathrm{S}}$)

- AC operation, $50 / 60 \mathrm{~Hz}$, standard version
- Closing

VA

- P.f.
- Closed
- P.f.

VA $\quad \begin{aligned} & \text { 27/8/0.75 } \\ & 4.2 / 3.3\end{aligned}$
37/33

- AC operation, 50 Hz , for USA/Canada
- Closing
- P.f. for closing
- Closed
0.81

36
0.8
4.4
0.8

- P.f. for closed
0.24
5.9
- AC operation, 60 Hz , for USA/Canada
- Closing
VA 31.7 43
- P.f. for closing

VA $\quad 0.81$

- P.f. for closed
0.25
- DC operation (closing = closed)
W 4

Permissible residual current of the electronics
(with 0 signal)

- AC operation
$<3 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)^{1)} \quad<4 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)^{1)}$
- DC operation
$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)^{1)}$

Operating times at $1.0 \times \mathbf{U s}_{\mathbf{s}}{ }^{2)}$

Total break time $=$ Opening delay + Arcing time

- AC operation
- Closing delay
ms $\quad 9.5 \ldots 24 \quad 9 \ldots 22$
- Opening delay
ms $4 \ldots 14$
4.5 ... 15
- DC operation
- Closing delay
ms $\quad 35 \ldots 50$
- Opening delay
- Arcing time ms

1) The 3RT2916-1GA00 additional load module is recommended for higher residual currents, see page 3/121.
2) The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are attenuated against voltage peaks (suppression diode 6x to 10x; diode assembly $2 x$ to 6x; suppression diode +1 to 5 ms ; varistor +2 to 5 ms)

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Type Size		Coupling contactors 3RT201.-.HB4. SOO	3RT201.-.JB4.	3RT201.-.KB4.
Control				
Solenoid coil operating range		$0.7 \ldots 1.25 \times U_{\text {S }}$		
Power consumption of the solenoid coils (for cold coil) Closing = Closed	At $U_{s} 24 \mathrm{~V}$ DC W	2.8		
Permissible residual current of the electronics (with 0 signal)		$<6 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$		
Upright mounting position		On request		
Overvoltage configuration of the solenoid coil		No overvoltage damping	Integrated diode	Integrated suppressor diode DK
Operating times				
- Closing delay - ON-delay NO - OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 60 \\ & 25 \ldots 40 \end{aligned}$		
- Opening delay - ON-delay NO - OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 7 \ldots 20 \\ & 20 \ldots 30 \end{aligned}$	$\begin{aligned} & 38 \ldots 65 \\ & 55 \ldots 7 \end{aligned}$	$\begin{aligned} & 7 \ldots 20 \\ & 20 \ldots 30 \end{aligned}$
		Coupling contactors	3RT201-1VB4	3RT201-1SB4
Size		S00	3RT201.-1VB4.	3RT201.-1SB4.
Control				
Solenoid coil operating range		$0.85 \ldots 1.85 \times U_{S}$		
Power consumption of the solenoid coils (for cold coil) Closing = Closed	At $\mathrm{U}_{\mathrm{s}} 24 \mathrm{~V}$ DC W	1.6		
Permissible residual current, upright mounting position		On request		
Overvoltage configuration of the solenoid coil		No overvoltage damping	Integrated diode	Integrated suppressor diode DK
Operating times				
- Closing delay - ON-delay NO - OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 25 \ldots 90 \\ & 15 \ldots 80 \end{aligned}$		
- Opening delay - ON-delay NO - OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 5 \ldots 20 \\ & 10 \ldots 30 \end{aligned}$	$\begin{aligned} & 20 \ldots 80 \\ & 30 \ldots 90 \end{aligned}$	$\begin{aligned} & 5 \ldots 20 \\ & 10 \ldots 30 \end{aligned}$

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

| | Contactors | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Type | 3RT2015 | 3RT2016 | 3RT2017 | 3RT2018 |
| Size | S00 | | | |
| Rated | | | | |

Rated data of the main contacts

Load rating with AC

Utilization category AC-1

- Rated operational currents I_{e}
- Rated power for AC loads ${ }^{1)}$
P.f. $=0.95$ (at $60^{\circ} \mathrm{C}$)
- Minimum cross-section in the main circuit

At $40^{\circ} \mathrm{C}$ up to 690 V	A	18	22
At $60^{\circ} \mathrm{C}$ up to 690 V	A	16	20
230 V	kW	6	7.5
400 V	kW	10.5	13
690 V	kW	18	22
	$\mathrm{~mm}^{2}$	2.5	4

for max. AC-1 rated value

Utilization categories AC-2 and AC-3

- Rated operational currents I_{e}

- Rated power for slipring or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \mathrm{kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 4 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 7.5 \\ & 7.5 \end{aligned}$
Thermal load capacity	10 s current	A	56	72	96	128
Power loss per conducting path	At $I_{\mathrm{e}} /$ AC-3	W	0.42	0.7	1.24	2.2

Utilization category AC-4 (at $\left.I_{\mathrm{a}}=6 \times I_{\mathrm{e}}\right)^{2)}$

- Maximum values
- Rated operational current I_{e}

Up to 400 V A 8.5
Up to 400 V kW
6.5
3 8.5

- The following applies to a contact endurance of about 200000 operating cycles:
- Rated operational currents I_{e}

Up to 400 V	A	2.6	4.1	5.5
690 V	A	1.8	3.3	4.4
At 230 V	kW	0.67	1.1	1.5
400 V	kW	1.15	2	2.5
690 V	kW	1.15	2.5	3.5

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
2) The data applies to $3 R T 2516$ and 3RT2517 contactors ($2 \mathrm{NO}+2 \mathrm{NC}$) up to a rated operational voltage of 400 V only

3) Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I\right) \cdot\left(U_{\mathrm{e}} / U\right)^{1.5} \cdot 1 / \mathrm{h}$.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Type		Contactors		
		3RT2023 to 3RT2025	3RT2026	3RT2027, 3RT2028
Size		S0		
Short-circuit protection				
Main circuit				
- Fuse links, operational class gG: LV HRC, type 3NA; DIAZED, type 5SB; NEOZED, type 5SE acc. to IEC/EN 60947-4-1				
- Type of coordination "1"	A	63	100	125
- Type of coordination "2"	A	25	35	50
- Weld-free (test conditions acc. to IEC 60947-4-1)	A	10	16	
- Miniature circuit breaker with C characteristic (short-circuit current 3 kA , type of coordination "1")	A	25	32	40
Auxiliary circuit				
- Fuse links, operational class gG: DIAZED, type 5SB; NEOZED, type 5SE (weld-free protection at $I_{\mathrm{k}} \leq 1 \mathrm{kA}$)	A	10		
- 230 V miniature circuit breaker, C characteristic (short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$)	A	10		
Short-circuit protection for contactors with overload relays		See Configuration Mar	ders	
Short-circuit protection for fuseless load feeders		See 3RA2 load feeders,	ards	

Type		Contactors				
		$\begin{aligned} & \text { 3RT2023 to } \\ & \text { 3RT2025 } \end{aligned}$	$\begin{aligned} & \text { 3RT2026 to } \\ & \text { 3RT2028 } \end{aligned}$	3RT202.-.NB3	3RT202.-.NF3	3RT202.-.NP3
Size		S0				
Control						
Type of operating mechanism		AC or DC		AC/DC		
Solenoid coil operating range	AC/DC	$0.8 \ldots 1.1 \times U_{\text {S }}{ }^{1)}$		$0.7 \ldots 1.3 \times U_{s}{ }^{2)}$		
Power consumption of the solenoid coils (for cold coil and $1.0 \times U_{\mathrm{s}}$)						
- AC operation, 50 Hz , standard version - Closing VA 65 77 6.6 11.9 12.7 - P.f. VA 0.82 7.6 9.8 0.98 1.9 - Closed 0.25 0.86 1.6 0.79 - P.f. 0.9 - AC operation, $50 / 60 \mathrm{~Hz}$, standard version						
- AC operation, $50 / 60 \mathrm{~Hz}$, standard version - Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 68 / 67 \\ & 0.72 / 0.74 \\ & 7.9 / 6.5 \\ & 0.25 / 0.28 \end{aligned}$	$\begin{aligned} & 81 / 79 \\ & 10.5 / 8.5 \end{aligned}$	$\begin{aligned} & \text { 6.6/6.7 } \\ & 0.98 / 0.98 \\ & 1.9 / 2.0 \\ & 0.86 / 0.82 \end{aligned}$	$\begin{aligned} & 11.9 / 12.0 \\ & 1.6 / 1.8 \\ & 0.79 / 0.74 \end{aligned}$	$\begin{aligned} & 12.7 / 14.7 \\ & \\ & 3.9 / 4.3 \\ & 0.51 / 0.56 \end{aligned}$
- AC operation, 50 Hz , for USA/Canada - Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 65 \\ & 0.82 \\ & 7^{3} / 7.6 \\ & 0.25 \end{aligned}$	77 0.82 9.8 0.28			
- AC operation, 60 Hz , for USA/Canada - Closing - P.f. - Closed - P.f.	VA VA	$\begin{aligned} & 73 \\ & 0.76 \\ & 7.2 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 87 \\ & 9.4 \end{aligned}$			
- DC operation (closing = closed)	W	5.9/5.9		5.9/1.4	10.2/1.3	14.3/1.9
Permissible residual current of the electr (with 0 signal) - AC operation - DC operation	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & <6 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \\ & <16 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \end{aligned}$		$<7 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$		
Operating times at $1.0 \times U_{\mathrm{s}}{ }^{4)}$ - AC operation - Closing delay - Opening delay - DC operation - Closing delay - Opening delay - Arcing time	ms ms ms ms ms	$\begin{array}{lll} 10 \ldots & 18 \\ 4 \ldots & 16 \\ 55 & \ldots & 80 \\ 16 \ldots & 17 \\ 10 & \end{array}$	$10 . .17$	$\begin{aligned} & 65 \ldots 80 \\ & 30 \ldots .45 \\ & 60 \ldots 8 \\ & 30 \ldots \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \ldots 70 \\ & 35 \ldots 45 \\ & 56 \ldots 70 \\ & 35 \ldots 45 \end{aligned}$	$\begin{aligned} & 60 \ldots 80 \\ & 30 \ldots 50 \\ & 60 \ldots 80 \\ & 30 \ldots 50 \end{aligned}$
1) Coil operating range - At $50 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{\mathrm{S}}$ - At $60 \mathrm{~Hz}: 0.85$ to $1.1 \times U_{s}$		4) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 x to 6 x).				

2) The following applies to U_{s} max $=280 \mathrm{~V}$: Upper limit $=1.1 \times U_{\mathrm{s}}$ max
${ }^{3)}$ Value applies to $3 R T 2023$ contactor 50 Hz AC .

| | | | Coupling contactors | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

[^7]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour
Contactors without overload relays

- No-load switching frequency

AC	$1 / h$	5000
DC	$1 / h$	1500
AC/DC	$1 / h$	1500

- Switching frequency z during rated operation ${ }^{1)}$
- Ie/AC-1

At 400 V	$1 / \mathrm{h}$	1000	
At 400 V	$1 / \mathrm{h}$	1000	750
At 400 V	$1 / \mathrm{h}$	1000	750
At 400 V	$1 / \mathrm{h}$	300	250

- IJ/AC-3 At 400 V 1/h 1000 250
Contactors with overload relays
- Mean value

1) Dependence of the switching frequency z ' on
the operational current I^{\prime} and operational voltage U^{\prime} ':
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I\right) \cdot\left(U_{\mathrm{e}} / U\right)^{1.5} \cdot 1 / \mathrm{h}$.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Short-circuit protection

Main circuit

- Fuse links, operational class gG: LV HRC, type 3NA; DIAZED, type 5SB; NEOZED, type 5SE acc. to IEC/EN 60947-4-1
- Type of coordination "1"
- Type of coordination "2
- Weld-free (test conditions acc. to IEC 60947-4-1)
A 160

Auxiliary circuit

- Fuse links, operational class gG:

A 10 DIAZED, type 5SB; NEOZED, type 5SE (weld-free protection at $I_{\mathrm{k}} \leq 1 \mathrm{kA}$)

- 230 V miniature circuit breaker, C characteristic A

| | | Contactors | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

2) In the case of $A C / D C$ coils, increased pickup currents (2.6 A on average) arise during the first 230 ms . For direct control by PLC, we therefore recommend special coupling contactors with reduced power consumption. The connection of one 3RT203.-.KB4. coupling contactor is possible per PLC output port with an output current of 2 A , see page $3 / 67$.
${ }^{3)}$ In the case of DC coils, increased pickup currents (2.1 A on average) arise during the first 230 ms .

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

			Contactors			
Type			3RT2035	3RT2036	3RT2037	3RT2038
Size			S2			
Rated data of the main contacts						
Load rating with AC						
Utilization category AC-1						
- Rated operational current I_{e}	At $40^{\circ} \mathrm{C}$ up to 690 V At $60^{\circ} \mathrm{C}$ up to 690 V		$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$
- Rated power for AC loads ${ }^{1)}$ P.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 230 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	kW kW kW	$\begin{aligned} & 23 \\ & 39 \\ & 68 \end{aligned}$	$\begin{aligned} & 26 \\ & 46 \\ & 79 \end{aligned}$	$\begin{aligned} & 30 \\ & 53 \\ & 91 \end{aligned}$	$\begin{aligned} & 34 \\ & 59 \\ & 102 \end{aligned}$
- Minimum cross-section in the main circuit for max. AC-1 rated value		mm^{2}	16	25		35
Utilization categories AC-2 and AC-3						
- Rated operational currents I_{e}	$\begin{array}{r} \text { Up to } 400 \mathrm{~V} \\ 440 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 41 \\ & 41 \\ & 41 \\ & 24 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 47 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 58 \end{aligned}$
- Rated power for slipring or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 11 \\ & 18.5 \\ & 22 \end{aligned}$	$\begin{aligned} & 15 \\ & 22 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 30 \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 37 \\ & 45 \end{aligned}$
Thermal load capacity	10 s current	A	400	420	520	640
Power loss per conducting path	At $I_{\mathrm{e}} /$ AC-3	W	2.2	4	3.8	5.7
Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$) - Maximum values						
- Rated operational current I_{e} - Rated power for squirrel-cage motors with 50 Hz and 60 Hz	Up to 400 V At 400 V	A kW	$\begin{aligned} & 35 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 41 \\ & 22 \end{aligned}$	$\begin{aligned} & 55 \\ & 30 \end{aligned}$	
- The following applies to a contact endurance of about 200000 operating cycles:						
- Rated operational currents I_{e}	$\begin{array}{r} \text { Up to } 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 22 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 24 \\ & 20 \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 30 \\ & 24 \end{aligned}$
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz	$\begin{array}{r} \text { At } 110 \mathrm{~V} \\ 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 3.2 \\ & 6.7 \\ & 11.6 \\ & 16.8 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.3 \\ & 12.6 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 8.5 \\ & 14.7 \\ & 20 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 9.1 \\ & 15.8 \\ & 21.8 \end{aligned}$

[^8]

- Mean value

15

1) Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I\right) \cdot\left(U_{\mathrm{e}} / U\right)^{1.5} \cdot 1 / \mathrm{h}$.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

| | | Contactors | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

2) In the case of $\mathrm{AC} / \mathrm{DC}$ coils, increased pickup currents (6.5 A on average) arise during the first 150 ms . For direct control by PLC, we therefore recommend special coupling contactors with reduced power consumption. The connection of one 3RT204.-.KB4. coupling contactor is possible per PLC output port with an output current of 2 A , see page $3 / 67$.
3) In the case of DC coils, increased pickup currents (2.1 A on average) arise during the first 150 ms .

Type		3RT2045	3RT2046	3RT2047
Size		S3		
Rated data of the main contacts				
Load rating with AC				
Utilization category AC-1				
- Rated operational current I_{e}	At $40^{\circ} \mathrm{C}$ up to 690 V A At $60^{\circ} \mathrm{C}$ up to 690 V A	$\begin{aligned} & 125 \\ & 105 \end{aligned}$	$\begin{aligned} & 130 \\ & 110 \end{aligned}$	
- Rated power for AC loads ${ }^{1)}$ $\text { P.f. }=0.95\left(\text { at } 60^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 230 \mathrm{~V} \mathrm{~kW} \\ & 400 \mathrm{~V} \mathrm{~kW} \\ & 690 \mathrm{~V} \text { kW } \end{aligned}$	$\begin{aligned} & 40 \\ & 69 \\ & 119 \end{aligned}$	$\begin{aligned} & 42 \\ & 72 \\ & 125 \end{aligned}$	
- Minimum cross-section in the main circuit for max. AC-1 rated value	mm^{2}	50		
Utilization categories AC-2 and AC-3				
- Rated operational currents I_{e}	$\begin{array}{r} \text { Up to } 400 \mathrm{~V} \text { A } \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & 80 \\ & 80 \\ & 58 \\ & 30 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \\ & 78 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \\ & 98 \end{aligned}$
- Rated power for slipring or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} \text { At } 230 \mathrm{~V} \mathrm{~kW} \\ 400 \mathrm{~V} \mathrm{~kW} \\ 690 \mathrm{VW} \\ 1000 \mathrm{~V} \mathrm{~kW} \\ \hline \end{array}$	$\begin{aligned} & 22 \\ & 37 \\ & 55 \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 45 \\ & 75 \end{aligned}$	$\begin{aligned} & 30 \\ & 55 \\ & 90 \end{aligned}$
Thermal load capacity	10 s current A	760		880
Power loss per conducting path	At $I_{\mathrm{e}} /$ AC-3 W	5.3	6.6	7.9
Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$) - Maximum values				
- Rated operational current I_{e}	Up to 400 V A	66	80	97
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz	At 400 V kW	37	45	55
- The following applies to a contact endurance of about 200000 operating cycles:				
- Rated operational currents I_{e}	Up to 400 V A 690 V A	$\begin{aligned} & 34 \\ & 24 \end{aligned}$	$\begin{aligned} & 42 \\ & 30 \end{aligned}$	$\begin{aligned} & 46 \\ & 36 \end{aligned}$
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz	At 110 V kW 230 V kW 400 V kW 690 V kW	$\begin{aligned} & 4.9 \\ & 10.4 \\ & 17.9 \\ & 21.8 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 12 \\ & 22 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 14 \\ & 24.3 \\ & 32.9 \end{aligned}$

[^9]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

TypeSize			Contactors		
			3RT2045	3RT2046	3RT2047
			S3		
Rated data of the main contacts (continued)					
Load rating with DC					
Utilization category DC-1, ($L / R \leq 1 \mathrm{~ms}$)					
- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)					
- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 100 \\ & 60 \end{aligned}$		
	110 V	A	9		
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2 \\ & 0.6 \end{aligned}$		
		A	0.4		
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$		
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 1.8 \\ & 1.0 \end{aligned}$		
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$		
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 80 \\ & 4.5 \\ & 2.6 \end{aligned}$		
Utilization category DC-3/DC-5, shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)					
- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 40 \\ & 6 \\ & 2.5 \end{aligned}$		
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1 \\ & 0.15 \\ & 0.06 \end{aligned}$		
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$		
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 7 \\ & 0.42 \\ & 0.16 \end{aligned}$		
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$		
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & 35 \\ & 0.8 \\ & 0.35 \end{aligned}$		

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour
Contactors without overload relays

- No-load switching frequency

AC	$1 / h$	5000
DC	$1 / h$	1000
AC/DC	$1 / h$	1000

- Switching frequency z during rated operation ${ }^{1)}$
- $I_{\mathrm{e}} / \mathrm{AC}-1$ at 400 V
- I $/$ AC -2 at 400 V
- I_{I} AC-3 at 400 V
- $I_{\mathrm{e}} / \mathrm{AC}-4$ at 400 V

Contactors with overload relays

- Mean value
${ }^{1)}$ Dependence of the switching frequency z ' on
the operational current I^{\prime} and operational voltage U^{\prime} ':
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I\right) \cdot\left(U_{\mathrm{e}} / U\right)^{1.5} \cdot 1 / \mathrm{h}$.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Switching devices - Contactors and contactor assemblies - for switching motors
Power contactors for switching motors
SIRIUS 3RT contactors, 3-pole up to 250 kW

	Contactors							
Type	3RT1054	3RT1055	3RT1056	3RT1064	3RT1065	3RT1066	3RT1075	3RT1076
Size	S6			S10			S12	

Rated data of the main contacts

Load rating with AC

Utilization category AC-1

- Rated operational currents I_{e}
- At $40^{\circ} \mathrm{C}$ up to 690 V
- At $60^{\circ} \mathrm{C}$ up to 1000 V
- Rated power for AC loads ${ }^{1)}$ with p.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$
- At 230 V
- At 400 V
- At 500 V
- At 690 V
- At 1000 V
- Minimum cross-section in the main circuit for max. AC-1 rated value

Utilization categories AC-2 and AC-3

- Rated operational currents I_{e}

Power loss per main conducting path At $I_{\mathrm{e}} / \mathrm{AC}-3 / 500 \mathrm{~V}$
Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)
Maximum values:

- Rated operational current I_{e}
- Up to 400 V
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz
- At 400 V

A	97	132	160	195	230	280	350	430
		75	90	110	132	160	200	250
kW	55							
A	54	68	81	96	117	125	150	175
A	48	57	65	85	105	115	135	150
KW	16	20	25	30	37	40	48	56
kW	29	38	45	54	66	71	85	98
KW	37	47	57	67	82	87	105	123
KW	48	55	65	82	102	112	133	148

The following applies to a contact endurance of about 200000 operating cycles:

- Rated operational currents I_{e}
- Up to 500 V
- Up to 690 V
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz
- At 230 V
- At 400 V
- At 500 V
- At 690 V

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).

Type		Contactors						
		3RT1054	3RT1055, 3RT1056	3RT1064	3RT1065	3RT1066	3RT1075	3RT1076
Size		S6		S10			S12	
Rated data of the main contacts (continued)								
Load rating with DC								
Utilization category DC-1, ($L / R \leq 1 \mathrm{~ms}$)								
- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)								
- 1 conducting path	Up to 24 V A	160		200	300		400	
	60 V A	160		200	300		330	
	110 V A	18			33			
	220 V A	3.4			3.8			
	440 V A	0.8			0.9			
	600 V A	0.5			0.6			
- 2 conducting paths in series	Up to 24 V A	160		200	300		400	
	60 V A	160		200	300		400	
	110 V A	160		200	300		400	
	220 V A	20			300		400	
	440 V A	3.2			4			
	600 V A	1.6			2			
- 3 conducting paths in series	Up to 24 V A	160		200	300		400	
	60 V A	160		200	300		400	
	110 V A	160		200	300		400	
	220 V A	160		200	300		400	
	440 V A	11.5			11			
	600 V A	4			5.2			
Utilization category DC-3/DC-5, shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)								
- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)								
- 1 conducting path	Up to 24 V A	160		200	300		400	
	60 VA	7.5			11			
	110 V A	2.5			3			
	220 V A	0.6						
	440 V A	0.17			0.18			
	600 V A	0.12			0.125			
- 2 conducting paths in series	Up to 24 V A	160					400	
	60 V A	160		200	300		400	
	110 V A	160		200	300		400	
	220 V A	2.5						
	440 V A	0.65						
	600 V A	0.37						
- 3 conducting paths in series	Up to 24 V A	160		200	300		400	
	60 V A	160		200	300		400	
	110 V A	160		200	300		400	
	220 V A	160		200	300		400	
	440 V A	1.4						
	600 V A	0.75						

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour
Contactors without overload relays

- No-load switching frequency

Contactors with mounted overload relay

- Mean value

1/h 60

[^10]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

	Contactors		
Type	3RT105.	3RT106.	3RT107.
Size	S6	S10	

Conductor cross-sections

Main conductors (1 or 2 conductors can be connected)
With mounted box terminals

- Terminal screws
- Tightening torque

Front clamping point connected

- Finely stranded with end sleeve (DIN 46228)
- Finely stranded without end sleeve
- Stranded
- AWG cables, solid or stranded
- Ribbon cable conductors (number \times width x thickness)
Rear clamping point connected
- Finely stranded with end sleeve (DIN 46228)
- Finely stranded without end sleeve
- Stranded
- AWG cables, solid or stranded
- Ribbon cable conductors (number \times width \times thickness)

Both clamping points connected
(minimum cross-section $16 \mathrm{~mm}^{2}$)

- Finely stranded with end sleeve (DIN 46228)
- Finely stranded without end sleeve
- Stranded
- AWG cables, solid or stranded
- Ribbon cable conductors (number x width x thickness)

(n) Screw terminals

Type	3RT1955-4G (55 kW)	3RT1956-4G	3RT1966-4G
	M10 (hexagon socket, A/F 4)		M12 (hexagon socket, A/F 5)

Nm 10... 12
lb.in 90 ... 110

mm^{2}	$16 \ldots 70$
$\mathrm{~mm}^{2}$	$16 \ldots 70$

16... 70

AWG 6... 2/0
$\mathrm{mm} \quad \mathrm{Min} 3 \times 9 \times$.
max. $6 \times 15.5 \times 0.8$
$\mathrm{mm}^{2} \quad 16 \ldots 70$
$\mathrm{mm}^{2} 16 \ldots 70$
$\mathrm{mm}^{2} \quad 16 \ldots 70$
AWG 6... 2/0
$\mathrm{mm} \quad$ Min. $3 \times 9 \times 0.8$
max. $6 \times 15.5 \times 0.8$
mm^{2} Max. $1 \times 50,1 \times 70$
mm^{2} Max. $1 \times 50,1 \times 70$
mm^{2} Max. $1 \times 50,1 \times 70$
AWG Max. $2 \times 1 / 0$
mm Max. $2 \times(6 \times 15.5 \times 0.8)$

16 ... 120
16 ... 120
6 ... 250 kcmil
Min. $3 \times 9 \times 0.8$ $\max .10 \times 15.5 \times 0.8$

16 ... 120
16 ... 120
16 ... 120
6 ... 250 kcmil
Min. $3 \times 9 \times 0.8$,
$\max .10 \times 15.5 \times 0.8$

Max. $1 \times 95,1 \times 120$
Max. $1 \times 95,1 \times 120$
Max. $1 \times 95,1 \times 120$
Max. $2 \times 3 / 0$

Max. $2 \times(10 \times 15.5 \times 0.8)$

20 ... 22
180... 195

70 ... 240
70 ... 240
95... 300

3/0 ... 600 kcmil
Min. $6 \times 9 \times 0.8$,
max. $20 \times 24 \times 0.5$

120 ... 185
120 ... 185
120 ... 240
250 ... 500 kcmil
Min. $6 \times 9 \times 0.8$,
$\max .20 \times 24 \times 0.5$

Min. 2×50, max. 2×185 Min. 2×50, max. 2×185 Min. 2×70, max. 2×240 Min. $2 \times 2 / 0$,
$\max .2 \times 500 \mathrm{kcmi}$
Max. $2 \times(20 \times 24 \times 0.5)$

Busbar connections
Connecting bar (max. width)
Cable lug connection

- Finely stranded with cable lug ${ }^{112)}$
- Stranded with cable lug ${ }^{1) 2)}$
- AWG cables, solid or stranded
- Terminal screws

Tightening torque

Auxiliary conductors (1 or 2 conductors can be connected)

- Solid
- Finely stranded with end sleeve (DIN 46228)
- AWG cables, solid or stranded
- Terminal screws
- Tightening torque

mm	17
$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 16 \ldots 95 \\ & 25 \ldots 120 \end{aligned}$
AWG	4 ... 250 kcmil
Nm lb.in	$\begin{aligned} & \text { M8 } \times 25 \text { (A/F 13) } \\ & 10 \ldots 14 \\ & 90 \ldots 124 \end{aligned}$
$\begin{gathered} \mathrm{mm}^{2} \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{aligned} & 2 \times(0.5 \ldots 1.5)^{3)} ; 2 \times(0.75 \ldots 2.5)^{3)} ; \max .2 \times(0.75 \ldots 4)^{3)} \\ & 2 \times(0.5 \ldots 1.5)^{3)} ; 2 \times(0.75 \ldots 2.5)^{3)^{\prime}} \end{aligned}$
AWG	$2 \times(18 \ldots 14)$
Nm lb.in	$\begin{aligned} & \text { M3 (Pozidriv size 2) } \\ & 0.8 \ldots 1.2 \\ & 7 \ldots 10.3 \end{aligned}$

Auxiliary conductors ${ }^{4}$ (1 or 2 conductors can be connected)

- Operating devices
- Solid
- Finely stranded with end sleeve (DIN 46228)
- Finely stranded without end sleeve
- AWG cables, solid or stranded

3RT105.: When using cable lugs according to DIN 46235, use the 3RT1956-4EA1 terminal cover for conductor cross-sections from $95 \mathrm{~mm}^{2}$ to maintain the phase clearance; see page $3 / 119$.
2) 3RT106. and 3RT107.: When connecting cable lugs according to DIN 46234 for conductor cross-sections larger than $240 \mathrm{~mm}^{2}$ and according to DIN 46235 for conductor cross-sections larger than $185 \mathrm{~mm}^{2}$, the 3RT1966-4EA1 terminal cover is required to maintain the phase clearance, see page $3 / 119$.

Data for North America

Type		3RT2015	3RT2016	3RT2017	3RT2018
Size		S00			
(1) and (11) rated data					
Rated operational voltage	V AC	600			
Uninterrupted current, at $40^{\circ} \mathrm{C}$, open and enclosed	A	20			
Maximum horsepower ratings (from © ${ }^{\text {© }}$ and (LL) approved values)					
- Rated power for three-phase motors at 60 Hz	At 200 V hp 230 V hp 460 V hp 575 V hp	$\begin{aligned} & 1.5 \\ & 2 \\ & 3 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 7.5 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 10 \end{aligned}$
Short-circuit protection (contactor)	At 600 V kA	5			
- Class J fuse (values for RK5 fuses available on request)	A	60			
- Circuit breakers in accordance with UL 489 ("Inverse Time Breakers")	A	50			
- Combination Motor Controllers (Type E) acc. to UL 508 and UL 60947-4-1		3RV2.1 or			

		Contacto						
Type		3RT2023	3RT2024	3RT2025	3RT2026	3RT2326-....-4AA0	3RT2027	3RT2028
Size		S0						
(13) and (11) rated data								
Rated operational voltage	V AC	600						
Uninterrupted current, at $40^{\circ} \mathrm{C}$, open and enclosed	A	30					42	
Maximum horsepower ratings (from (®1) and (1L) approved values)								
- Rated power for three-phase motors at 60 Hz	At 200 V hp 230 V hp 460 V hp 575 V hp	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 7.5 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 7.5 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 20 \\ & 25 \end{aligned}$	25
Short-circuit protection (contactor)	At 600 V kA	5						
- Class J fuse (values for RK5 fuses available on request)	A	125					150	
- Circuit breakers in accordance with UL 489 ("Inverse Time Breakers")	A	70					100	
- Combination Motor Controllers (Type E) acc. to UL 508 and UL 60947-4-1	At 480 V Type At 600 V Type	3RV202 3RV202						

TypeSize			Contactors						
			3RT2035	$\begin{aligned} & \text { 3RT2036, } \\ & \text { 3RT2336-....-4AA0 } \end{aligned}$	3RT2037	3RT2038		3RT2046	3RT2047
			S2				S3		
(14. and (11) rated data									
Rated operational voltage		V AC	600						
Uninterrupted current, at $40^{\circ} \mathrm{C}$, open and enclosed		A	55	60	80	90	62	77	99
Maximum horsepower ratings (from © ${ }^{\text {® }}$ and (LL) approved values)									
- Rated power for three-phase motors at 60 Hz	$\begin{array}{r} \text { At } 200 / 208 \mathrm{~V} \\ 230 / 240 \mathrm{~V} \\ 460 / 480 \mathrm{~V} \\ 575 / 600 \mathrm{~V} \end{array}$		$\begin{aligned} & 10 \\ & 15 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 50 \end{aligned}$	$\begin{aligned} & 25 \\ & 60 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 60 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 40 \\ & 100 \end{aligned}$
Short-circuit protection (contactor)	At 600 V		5	10			10		
- RK5 fuse		A	150	200	250		300	350	
- Combination Motor Controllers (Type E) acc. to UL 508 and UL 60947-4-1		Type	3RV203				3RV204		

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

TypeSize		Contactors							
		3RT1054	3RT1055	3RT1056	3RT1064	3RT1065	3RT1066	3RT1075	3RT1076
		S6			S10			S12	
(6) and (1) rated data									
Rated operational voltage	V AC	600							
Uninterrupted current, at $40^{\circ} \mathrm{C}$, open and enclosed	A	140	195		250	330		400	540
Maximum horsepower ratings (from (®3 and (14) approved values)									
- Rated power for three-phase motors at 60 Hz	At 200 V hp 230 V hp 460 V hp 575 V hp	$\begin{aligned} & 40 \\ & 50 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 125 \\ & 150 \end{aligned}$	$\begin{aligned} & 60 \\ & 75 \\ & 150 \\ & 200 \end{aligned}$		$\begin{aligned} & 75 \\ & 100 \\ & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 125 \\ & 150 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \\ & 400 \\ & 500 \end{aligned}$
Short-circuit protection		More information, see Certificate of Compliance for the individual devices. For the dimensioning of load feeders, see Configuration Manual.							

TypeSize		Contactors			
		3RT201	3RT202 to 3RT204		3RT105 to 3RT107
		S00	S0 to S3		S6 to S12
		Integrated or mountable auxiliary switch	Integrated	Mountable auxiliary switch	Mountable auxiliary switch
(16) and (11) rated data of the auxiliary contacts					
Rated voltage	VAC	600			
Switching capacity		A 600, Q 600	A 600, P 600	A 600, Q 600	A 600, Q 600
- Uninterrupted current at 240 V AC	A	10			

Selection and ordering data
AC operation \sim

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS*	$=41 B$

3RT201.-1A.
Rated data
AC-2 and AC-3,
$t_{u}: 60^{\circ} \mathrm{C}$
Opera- Ratings of tional three-phase current I_{e} motors at up to $\quad 50 \mathrm{~Hz}$ and $400 \mathrm{~V} \quad 400 \mathrm{~V}$
A
A kW
For screw fixing and snap-on mounting
onto TH 35 standard mounting rail
Size S00

7	3	18	10	1	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	$\stackrel{\square}{\square}$	3RT2015-1 AB01 3RT2015-1AF01 3RT2015-1AP01	i	3RT2015-2AB01 3RT2015-2AF01 3RT2015-2AP01
			01	--	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	-	$\begin{aligned} & \text { 3RT2015-1AB02 } \\ & \text { 3RT2015-1AF02 } \\ & \text { 3RT2015-1AP02 } \end{aligned}$	i	3RT2015-2AB02 3RT2015-2AF02 3RT2015-2AP02
9	4	22	10	1	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	-	$\begin{aligned} & \text { 3RT2016-1AB01 } \\ & \text { 3RT2016-1 AF01 } \\ & \text { 3RT2016-1AP01 } \end{aligned}$	i	$\begin{aligned} & \text { 3RT2016-2AB01 } \\ & \text { 3RT2016-2AF01 } \\ & \text { 3RT2016-2AP01 } \end{aligned}$
			01	--	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	-	$\begin{aligned} & \text { 3RT2016-1AB02 } \\ & \text { 3RT2016-1AF02 } \\ & \text { 3RT2016-1AP02 } \end{aligned}$	i	$\begin{aligned} & \text { 3RT2016-2AB02 } \\ & \text { 3RT2016-2AF02 } \\ & \text { 3RT2016-2AP02 } \end{aligned}$
12	5.5	22	10	1	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	-	$\begin{aligned} & \text { 3RT2017-1AB01 } \\ & \text { 3RT2017-1 AF01 } \\ & \text { 3RT2017-1AP01 } \end{aligned}$		$\begin{aligned} & \text { 3RT2017-2AB01 } \\ & \text { 3RT2017-2AF01 } \\ & \text { 3RT2017-2AP01 } \end{aligned}$
			01	--	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	-	$\begin{aligned} & \text { 3RT2017-1AB02 } \\ & \text { 3RT2017-1 AF02 } \\ & \text { 3RT2017-1AP02 } \end{aligned}$	$\stackrel{\rightharpoonup}{\bullet}$	$\begin{aligned} & \text { 3RT2017-2AB02 } \\ & \text { 3RT2017-2AF02 } \\ & \text { 3RT2017-2AP02 } \end{aligned}$
16	7.5	22	10	1	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	-	$\begin{aligned} & \text { 3RT2018-1AB01 } \\ & \text { 3RT2018-1AF01 } \\ & \text { 3RT2018-1AP01 } \end{aligned}$	i	$\begin{aligned} & \text { 3RT2018-2AB01 } \\ & \text { 3RT2018-2AF01 } \\ & \text { 3RT2018-2AP01 } \end{aligned}$
			01	--	1	$\begin{aligned} & \hline 24 \\ & 110 \\ & 230 \\ & \hline \end{aligned}$	-	3RT2018-1AB02 3RT2018-1AF02 3RT2018-1AP02		3RT2018-2AB02 3RT2018-2AF02 3RT2018-2AP02
With permanently mounted auxiliary switch										
7	3	18	22	2	2	230	2	3RT2015-1AP04-3MAO	5	3RT2015-2AP04-3MA0
9	4	22	22	2	2	230	2	3RT2016-1AP04-3MA0	5	3RT2016-2AP04-3MA0
12	5.5	22	22	2	2	230	2	3RT2017-1AP04-3MAO	5	3RT2017-2AP04-3MA0
16	7.5	22	22	2	2	230	\checkmark	3RT2018-1AP04-3MAO	5	3RT2018-2AP04-3MAO
With permanently mounted auxiliary switch and varistor plugged into the front										
7	3	18	22	2	2	230	5	3RT2015-1CP04-3MAO	5	3RT2015-2CP04-3MAO
9	4	22	22	2	2	230	5	3RT2016-1CP04-3MAO	5	3RT2016-2CP04-3MA0
12	5.5	22	22	2	2	230	5	3RT2017-1CP04-3MAO	5	3RT2017-2CP04-3MA0
16	7.5	22	22	2	2	230	5	3RT2018-1CP04-3MAO	5	3RT2018-2CP04-3MAO

Other voltages according to page 3/75 on request.
Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3 -pole up to 250 kW IE3/IE4 ready

AC operation ~

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS	$=41 \mathrm{~B}$

3RT202.-1A. 00

Rated data			Auxiliary contacts		Rated control supply voltage U_{s} 50 Hz AC	SD	Screw terminals	(1)	SD	Spring-loaded terminals \bigcirc	
$\begin{aligned} & \mathrm{AC}-2 \text { and } \mathrm{AC}-3, \\ & t_{\mathrm{u}}: 60^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathrm{AC}-1, \\ & t_{\mathrm{u}}: 40^{\circ} \mathrm{C} \end{aligned}$									
Operational	Ratings of three-phase	Operational	Ident. No.	Version							
current I_{e} up to	motors at 50 Hz and	current I_{e} up to					Article No.	Price per PU		Article No.	Price per PU
400 V	400 V	690 V									
A	kW	A		NO NC	V	d			d		

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail

Size SO

Other voltages according to page 3/75 on request.
Accessories and spare parts, see pages 3/77 to 3/126.

AC operation ~

PS*	$=1$ unit
PG	$=41 \mathrm{~B}$

3RT202.-1A. 04
Rated data
AC-2 and AC-3,
$t_{\mathrm{u}}: 60^{\circ} \mathrm{C}$
Opera- Ratings of
tional three-phase
current I_{e}
up to 50 tors at
400 V 400 V

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail
Size SO

Wit	able									
9	4	40	22	2	2	$\begin{aligned} & 24 \\ & 230 \end{aligned}$	5	$\begin{aligned} & \text { 3RT2023-1AB04 } \\ & \text { 3RT2023-1AP04 } \end{aligned}$	5	$\begin{aligned} & \text { 3RT2023-2AB04 } \\ & \text { 3RT2023-2AP04 } \end{aligned}$
12	5.5	40	22	2	2	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2024-1AB04 } \\ & \text { 3RT2024-1AF04 } \\ & \text { 3RT2024-1AP04 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RT2024-2AB04 } \\ & \text { 3RT2024-2AF04 } \\ & \text { 3RT2024-2AP04 } \end{aligned}$
17	7.5	40	22	2	2	$\begin{aligned} & \hline 24 \\ & 110 \\ & 230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2025-1AB04 } \\ & \text { 3RT2025-1AF04 } \\ & \text { 3RT2025-1AP04 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 2 \\ & \hline \end{aligned}$	3RT2025-2AB04 3RT2025-2AF04 3RT2025-2AP04
25	11	40	22	2	2	$\begin{aligned} & \hline 24 \\ & 110 \\ & 230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2026-1AB04 } \\ & \text { 3RT2026-1AF04 } \\ & \text { 3RT2026-1AP04 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 2 \\ & \hline \end{aligned}$	3RT2026-2AB04 3RT2026-2AF04 3RT2026-2AP04
32	15	50	22	2	2	$\begin{aligned} & \hline 24 \\ & 110 \\ & 230 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2027-1AB04 } \\ & \text { 3RT2027-1AF04 } \\ & \text { 3RT2027-1AP04 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RT2027-2AB04 } \\ & \text { 3RT2027-2AF04 } \\ & \text { 3RT2027-2AP04 } \end{aligned}$
38	18.5	50	22	2	2	$\begin{aligned} & \hline 24 \\ & 110 \\ & 230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2028-1AB04 } \\ & \text { 3RT2028-1AF04 } \\ & \text { 3RT2028-1AP04 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RT2028-2AB04 } \\ & \text { 3RT2028-2AF04 } \\ & \text { 3RT2028-2AP04 } \\ & \hline \end{aligned}$
With permanently mounted auxiliary switch and varistor plugged in										
9	4	40	22	2	2	230	5	3RT2023-1CL24-3MA0	5	3RT2023-2CL24-3MA0
12	5.5	40	22	2	2	230	-	3RT2024-1CL24-3MA0	2	3RT2024-2CL24-3MA0
17	7.5	40	22	2	2	230	5	3RT2025-1CL24-3MA0	5	3RT2025-2CL24-3MA0
25	11	40	22	2	2	230	5	3RT2026-1CL24-3MA0	5	3RT2026-2CL24-3MA0
32	15	50	22	2	2	230	5	3RT2027-1CL24-3MA0	5	3RT2027-2CL24-3MA0
38	18.5	50	22	2	2	230	5	3RT2028-1CL24-3MAO	5	3RT2028-2CL24-3MA0

Other voltages according to page 3/75 on request.
Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW IF3/IE4 ready

AC operation ~

PU (UNIT, SET, M) = 1

PS^{*}	$=1$ unit
PG	$=41 \mathrm{~B}$

3RT203.-1A. 00

3RT203.-3A. 00

3RT203.-1A. 04

3RT203.-1CL24-3MA0

3RT203.-3CL24-3MAO

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail
Size S2

41	18.5	60	11	1	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	$\stackrel{\rightharpoonup}{\square}$	3RT2035-1AB00 3RT2035-1AF00 3RT2035-1AP00	2 2	3RT2035-3AB00 3RT2035-3AF00 3RT2035-3AP00
50	22	70	11	1	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	$\stackrel{\square}{\square}$	$\begin{aligned} & \text { 3RT2036-1 AB00 } \\ & \text { 3RT2036-1AF00 } \\ & \text { 3RT2036-1 AP00 } \end{aligned}$	5 2	3RT2036-3AB00 3RT2036-3AF00 3RT2036-3AP00
65	30	80	11	1	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$		$\begin{aligned} & \text { 3RT2037-1AB00 } \\ & \text { 3RT2037-1AF00 } \\ & \text { 3RT2037-1AP00 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2037-3AB00 } \\ & \text { 3RT2037-3AF00 } \\ & \text { 3RT2037-3AP00 } \end{aligned}$
80	37	90	11	1	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	2	3RT2038-1AB00 3RT2038-1AF00 3RT2038-1AP00	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$	3RT2038-3AB00 3RT2038-3AF00 3RT2038-3AP00
	vable	sw								
41	18.5	60	22	2	2	$\begin{aligned} & 24 \\ & 110 \\ & 230 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \\ & \hline \end{aligned}$	3RT2035-1AB04 3RT2035-1AF04 3RT2035-1AP04		--
50	22	70	22	2	2	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2036-1AB04 } \\ & \text { 3RT2036-1AF04 } \\ & \text { 3RT2036-1AP04 } \end{aligned}$		--
65	30	80	22	2	2	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	2 2	$\begin{aligned} & \text { 3RT2037-1AB04 } \\ & \text { 3RT2037-1AF04 } \\ & \text { 3RT2037-1AP04 } \end{aligned}$		--
80	37	90	22	2	2	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 2	$\begin{aligned} & \text { 3RT2038-1AB04 } \\ & \text { 3RT2038-1AF04 } \\ & \text { 3RT2038-1AP04 } \end{aligned}$		$\begin{aligned} & -- \\ & -- \end{aligned}$
With permanently mounted auxiliary switch and integrated coil circuit (varistor plugged in at the factory)										
41	18.5	60	22	2	2	230	5	3RT2035-1CL24-3MA0	5	3RT2035-3CL24-3MA0
50	22	70	22	2	2	230	2	3RT2036-1CL24-3MA0	5	3RT2036-3CL24-3MA0
65	30	80	22	2	2	230	5	3RT2037-1CL24-3MA0	5	3RT2037-3CL24-3MA0
80	37	90	22	2	2	230	2	3RT2038-1CL24-3MA0	2	3RT2038-3CL24-3MA0

Other voltages according to page 3/75 on request
Accessories and spare parts, see pages 3/77 to 3/126.

AC operation \sim

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS*	$=41 \mathrm{~B}$

For screw fixing and snap-on mounting
onto TH 35-15 and TH 75-15 standard mounting rails

Size S3

80	37	125	11	1	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	2	3RT2045-1AB00 3RT2045-1AF00 3RT2045-1AP00	$\begin{aligned} & 5 \\ & 2 \\ & 2 \end{aligned}$	3RT2045-3AB00 3RT2045-3AF00 3RT2045-3AP00
95	45	130	11	1	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	${ }^{2}$	$\begin{aligned} & \text { 3RT2046-1AB00 } \\ & \text { 3RT2046-1 AF00 } \\ & \text { 3RT2046-1AP00 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 2 \\ & 2 \end{aligned}$	3RT2046-3AB00 3RT2046-3AF00 3RT2046-3AP00
110	55	130	11	1	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 5	3RT2047-1AB00 3RT2047-1AF00 3RT2047-1AP00	$\begin{aligned} & \hline 5 \\ & 5 \\ & 2 \end{aligned}$	3RT2047-3AB00 3RT2047-3AF00 3RT2047-3AP00
With	ovab	swit								
80	37	125	22	2	2	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 2 2	3RT2045-1AB04 3RT2045-1AF04 3RT2045-1AP04		
95	45	130	22	2	2	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 2	$\begin{aligned} & \text { 3RT2046-1AB04 } \\ & \text { 3RT2046-1AF04 } \\ & \text { 3RT2046-1AP04 } \end{aligned}$		
110	55	130	22	2	2	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 5	$\begin{aligned} & \text { 3RT2047-1AB04 } \\ & \text { 3RT2047-1AFO4 } \\ & \text { 3RT2047-1AP04 } \end{aligned}$		--
With permanently mounted auxiliary switch and integrated coil circuit (varistor plugged in at the factory)										
80	37	125	22	2	2	230	5	3RT2045-1CL24-3MAO		--
95	45	130	22	2	2	230	5	3RT2046-1CL24-3MAO		--
110	55	130	22	2	2	230	2	3RT2047-1CL24-3MAO		--

Other voltages according to page 3/75 on request.
Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW IF3/IE4 ready

DC operation =-=

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS	
	$=41 \mathrm{~B}$

							3RT201.-1B...					
Rated data AC-2 and AC-3, $t_{u}: 60^{\circ} \mathrm{C}$			Auxiliary contacts		Rated control supply voltage U_{s} DC	SD	Screw term		SD	Spring-loaded terminals		
		AC-1, $t_{u}: 40^{\circ} \mathrm{C}$										
Operational current $I_{\text {e }}$ up to 400 V	Ratings of three-phase motors at 50 Hz and 400 V	Opera- tional current I_{e} up to 690 V	Ident. No.	Version								
				14	V		Article No.	Price per PU	d	Article No.	Price per PU	
A	kW	A		NO NC		d						

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail

Size SOO

7	3	18	10	1	--	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	2	$\begin{aligned} & \text { 3RT2015-1BB41 } \\ & \text { 3RT2015-1BM41 } \end{aligned}$	5	3RT2015-2BB41 3RT2015-2BM41
			01	--	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	5	3RT2015-1BB42 3RT2015-1BM42	5	3RT2015-2BB42 3RT2015-2BM42
9	4	22	10	1	--	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { b } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-1BB41 } \\ & \text { 3RT2016-1BM41 } \end{aligned}$	5	3RT2016-2BB41 3RT2016-2BM41
			01	--	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { b } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-1BB42 } \\ & \text { 3RT2016-1BM42 } \end{aligned}$	$\begin{aligned} & \text { b } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-2BB42 } \\ & \text { 3RT2016-2BM42 } \end{aligned}$
12	5.5	22	10	1	--	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	5	$\begin{aligned} & \text { 3RT2017-1BB41 } \\ & \text { 3RT2017-1BM41 } \end{aligned}$	$\begin{aligned} & \text { r } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2017-2BB41 } \\ & \text { 3RT2017-2BM41 } \\ & \hline \end{aligned}$
			01	--	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	5	$\begin{aligned} & \text { 3RT2017-1BB42 } \\ & \text { 3RT2017-1BM42 } \end{aligned}$	$\begin{aligned} & \text { b } \\ & 5 \end{aligned}$	3RT2017-2BB42 3RT2017-2BM42
16	7.5	22	10	1	--	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { V } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2018-1BB41 } \\ & \text { 3RT2018-1BM41 } \end{aligned}$	$\begin{aligned} & \text { r } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2018-2BB41 } \\ & \text { 3RT2018-2BM41 } \end{aligned}$
			01	--	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { b } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2018-1BB42 } \\ & \text { 3RT2018-1BM42 } \end{aligned}$	$\begin{aligned} & \text { r } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2018-2BB42 } \\ & \text { 3RT2018-2BM42 } \end{aligned}$
	te	ist	grat							
7	3	18	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	-	$\begin{gathered} -- \\ 1 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2015-1UB41 } \\ & \text { 3RT2015-1UB42 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2015-2UB41 } \\ & \text { 3RT2015-2UB42 } \end{aligned}$
9	4	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\begin{gathered} -- \\ 1 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-1UB41 } \\ & \text { 3RT2016-1UB42 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-2UB41 } \\ & \text { 3RT2016-2UB42 } \end{aligned}$
12	5.5	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\begin{gathered} -- \\ 1 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2017-1UB41 } \\ & \text { 3RT2017-1UB42 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$	3RT2017-2UB41 3RT2017-2UB42
16	7.5	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\overline{1--}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2018-1UB41 } \\ & \text { 3RT2018-1UB42 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT2018-2UB41 3RT2018-2UB42
	ated	de	ated		ry					
7	3	18	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	-	$\begin{gathered} -- \\ 1 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	∇	$\begin{aligned} & \text { 3RT2015-1FB41 } \\ & \text { 3RT2015-1FB42 } \end{aligned}$	\square	$\begin{aligned} & \text { 3RT2015-2FB41 } \\ & \text { 3RT2015-2FB42 } \end{aligned}$
9	4	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\begin{gathered} -- \\ 1 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$		$\begin{aligned} & \text { 3RT2016-1FB41 } \\ & \text { 3RT2016-1FB42 } \end{aligned}$	i	$\begin{aligned} & \text { 3RT2016-2FB41 } \\ & \text { 3RT2016-2FB42 } \end{aligned}$
12	5.5	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\begin{gathered} -- \\ 1 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$>$	3RT2017-1FB41 3RT2017-1FB42	-	3RT2017-2FB41 3RT2017-2FB42
16	7.5	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	--	$\begin{gathered} -- \\ 1 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$>$	$\begin{aligned} & \text { 3RT2018-1FB41 } \\ & \text { 3RT2018-1FB42 } \end{aligned}$	$\stackrel{\square}{\square}$	3RT2018-2FB41 3RT2018-2FB42

1) When using contactors with IE3/IE4 motors, use contactors fitted with varistors instead of diodes.
For more information about dimensioning and configuring, see page 3/7.

Other voltages according to page $3 / 75$ on request.
Accessories and spare parts, see pages 3/77 to 3/126.

DC operation =-=

$\mathrm{PU}(\mathrm{UNIT}, \mathrm{SET}, \mathrm{M})$	$=1$
PS^{\star}	$=1 \mathrm{unit}$
PG	$=41 \mathrm{~B}$

Rated data
AC-2 and AC-3, $t_{u}: 60^{\circ} \mathrm{C}$
Opera- Ratings of tional three-phase current I_{e} motors at 50 Hz up to and $400 \mathrm{~V} \quad 400 \mathrm{~V}$

A

Auxiliary contacts	Rated control supply voltage U_{S}
Ident. No.	Version
DC	

3RT201.-1BB4.-0CC0
Screw terminals
Article No. $\begin{array}{r}\text { Price } \\ \text { per PU }\end{array}$

3RT201.-2BB4.-0CC0

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail

Size S00

With permanently mounted auxiliary switch

7	$\mathbf{3}$	18	$\mathbf{2 2}$	2	2	24	
9	$\mathbf{4}$	22	$\mathbf{2 2}$	2	2	24	$>$
12	$\mathbf{5 . 5}$	22	$\mathbf{2 2}$	2	2	24	2
16	$\mathbf{7 . 5}$	22	$\mathbf{2 2}$	2	2	24	2

With permanently mounted auxiliary switch and integrated coil circuit (diode integrated at the factory) ${ }^{1)}$

7	3	18	22	2	2	24	2
9	4	22	22	2	2	24	2
12	5.5	22	22	2	2	24	2
16	7.5	22	22	2	2	24	2
With voltage tap-off (only available with 24 V DC coils)							
7	3	18	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	--	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$>$
9	4	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	--	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	2
12	5.5	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	1	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$
16	7.5	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	--	24 24	2 2

${ }^{1)}$ When using contactors with IE3/IE4 motors, use contactors fitted with varistors instead of diodes. For more information about dimensioning and configuring, see page 3/7.

3RT2015-1BB44-3MA0	2	3RT2015-2BB44-3MA0
3RT2016-1BB44-3MA0	2	3RT2016-2BB44-3MA0
3RT2017-1BB44-3MA0	2	3RT2017-2BB44-3MA0
3RT2018-1BB44-3MA0	2	3RT2018-2BB44-3MA0
3RT2015-1FB44-3MA0	2	3RT2015-2FB44-3MA0
3RT2016-1FB44-3MAO	2	3RT2016-2FB44-3MA0
3RT2017-1FB44-3MA0	5	3RT2017-2FB44-3MA0
3RT2018-1FB44-3MA0	2	3RT2018-2FB44-3MA0
$\begin{aligned} & \text { 3RT2015-1BB41-0CC0 } \\ & \text { 3RT2015-1BB42-0CC0 } \end{aligned}$	2	$\begin{aligned} & \text { 3RT2015-2BB41-0CC0 } \\ & \text { 3RT2015-2BB42-0CC0 } \end{aligned}$
$\begin{aligned} & \text { 3RT2016-1BB41-0CC0 } \\ & \text { 3RT2016-1BB42-0CC0 } \end{aligned}$	2	3RT2016-2BB41-0CC0
$\begin{aligned} & \text { 3RT2017-1BB41-0CC0 } \\ & \text { 3RT2017-1BB42-0CC0 } \end{aligned}$	\checkmark	3RT2017-2BB41-0CC0
$\begin{aligned} & \text { 3RT2018-1BB41-0CC0 } \\ & \text { 3RT2018-1BB42-0CC0 } \end{aligned}$	2	$\begin{aligned} & \text { 3RT2018-2BB41-0CC0 } \\ & \text { 3RT2018-2BB42-0CC0 } \end{aligned}$

Other voltages according to page $3 / 75$ on request.
Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors
 Power contactors for switching motors

SIRIUS 3RT contactors, 3 -pole up to 250 kW IE3/IE4 ready

DC operation for direct control by PLC =-=

- Coupling contactors with adapted power consumption
- Suitable for electronic PLC/F-PLC outputs
- Cannot be expanded with auxiliary switches

PU (UNIT, SET, M) = 1
PS* $=1$ unit
PG $=41 \mathrm{~B}$

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail

Size SOO

(Cannot be expanded with auxiliary switches)
Operating range $\mathbf{0 . 7} \ldots \mathbf{1 . 2 5} \times \boldsymbol{U}_{\mathbf{s}}$
power consumption of the solenoid coils $\mathbf{2 . 8} \mathbf{W}$ at 24 V

7	3	18	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\begin{gathered} -- \\ 1 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2015-1HB41 } \\ & \text { 3RT2015-1HB42 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2015-2HB41 } \\ & \text { 3RT2015-2HB42 } \end{aligned}$
9	4	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\begin{gathered} -- \\ 1 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-1HB41 } \\ & \text { 3RT2016-1HB42 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-2HB41 } \\ & \text { 3RT2016-2HB42 } \end{aligned}$
12	$5.5{ }^{1)}$	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\begin{gathered} -- \\ 1 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	5	$\begin{aligned} & \text { 3RT2017-1HB41 } \\ & \text { 3RT2017-1HB42 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2017-2HB41 } \\ & \text { 3RT2017-2HB42 } \end{aligned}$
Operating range $\mathbf{0 . 8 5} \ldots \mathbf{1 . 8 5} \times \boldsymbol{U}_{\mathbf{s}}$, power consumption of the solenoid coils $\mathbf{1 . 6} \mathbf{W}$ at 24 V										
7	3	18	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	--	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2015-1 MB41-0KTO } \\ & \text { 3RT2015-1 MB42-0KT0 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2015-2MB41-OKTO } \\ & \text { 3RT2015-2MB42-OKTO } \end{aligned}$
9	4	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	--	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-1MB41-0KTO } \\ & \text { 3RT2016-1MB42-0KTO } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-2MB41-OKTO } \\ & \text { 3RT2016-2MB42-0KTO } \end{aligned}$
12	$5.5^{1)}$	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\overline{1--}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2017-1 MB41-0KT0 } \\ & \text { 3RT2017-1 MB42-0KT0 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT2017-2MB41-0KTO 3RT2017-2MB42-0KT0
With integrated coil circuit (diode integrated at the factory) ${ }^{1)}$ (Cannot be expanded with auxiliary switches)										
7	3	18	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\begin{aligned} & -- \\ & 1 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RT2015-1JB41 } \\ & \text { 3RT2015-1JB42 } \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2015-2JB41 } \\ & \text { 3RT2015-2JB42 } \end{aligned}$
9	4	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	2	$\begin{aligned} & \text { 3RT2016-1JB41 } \\ & \text { 3RT2016-1JB42 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-2JB41 } \\ & \text { 3RT2016-2JB42 } \end{aligned}$
12	$5.5^{1)}$	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\overline{1--}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2017-1JB41 } \\ & \text { 3RT2017-1JB42 } \end{aligned}$	5	$\begin{aligned} & \text { 3RT2017-2JB41 } \\ & \text { 3RT2017-2JB42 } \end{aligned}$
Operating range $\mathbf{0 . 8 5} \ldots \mathbf{1 . 8 5} \times \mathbf{U}_{\mathbf{s}}$, power consumption of the solenoid coils $\mathbf{1 . 6} \mathbf{W}$ at 24 V										
7	3	18	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\begin{gathered} -- \\ 1 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT2015-1VB41 3RT2015-1VB42	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2015-2VB41 } \\ & \text { 3RT2015-2VB42 } \end{aligned}$
9	4	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	$\overline{--}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-1VB41 } \\ & \text { 3RT2016-1VB42 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2016-2VB41 } \\ & \text { 3RT2016-2VB42 } \end{aligned}$
12	$5.5^{1)}$	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1 --		$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2017-1VB41 } \\ & \text { 3RT2017-1VB42 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2017-2VB41 } \\ & \text { 3RT2017-2VB42 } \end{aligned}$

[^11]Other voltages according to page $3 / 75$ on request.
Accessories and spare parts, see pages 3/77 to 3/126.

DC operation for direct control by PLC =-=

- Coupling contactors with adapted power consumption
- Suitable for electronic PLC/F-PLC outputs
- Cannot be expanded with auxiliary switches

PU $($ UNIT, SET, M) $=1$
PS* $=1$ unit
PG $=41 \mathrm{~B}$

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail

Size S00

With integrated coil circuit (suppressor diode integrated at the factory) ${ }^{1)}$
(Cannot be expanded with auxiliary switches)
Operating range $\mathbf{0 . 7} \ldots \mathbf{1 . 2 5} \times \boldsymbol{U}_{\mathbf{s}}$
power consumption of the solenoid coils 2.8 W at 24 V

7	3	18	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	$\begin{aligned} & 1 \\ & -- \end{aligned}$	1	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RT2015-1KB41 } \\ & \text { 3RT2015-1KB42 } \end{aligned}$	2	$\begin{aligned} & \text { 3RT2015-2KB41 } \\ & \text { 3RT2015-2KB42 } \end{aligned}$
9	4	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	1	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	2	$\begin{aligned} & \text { 3RT2016-1KB41 } \\ & \text { 3RT2016-1KB42 } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	3RT2016-2KB41 3RT2016-2KB42
12	$5.5{ }^{1)}$	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	$\begin{aligned} & 1 \\ & -- \end{aligned}$	1	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RT2017-1KB41 } \\ & \text { 3RT2017-1KB42 } \end{aligned}$	i	$\begin{aligned} & \text { 3RT2017-2KB41 } \\ & \text { 3RT2017-2KB42 } \end{aligned}$
	range sumpt									
7	3	18	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	$\begin{aligned} & 1 \\ & -- \end{aligned}$	$\overline{-}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2015-1SB41 } \\ & \text { 3RT2015-1SB42 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT2015-2SB41 3RT2015-2SB42
9	4	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	--	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	5 5	$\begin{aligned} & \text { 3RT2016-1SB41 } \\ & \text { 3RT2016-1SB42 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT2016-2SB41 3RT2016-2SB42
12	$5.5{ }^{1)}$	22	$\begin{aligned} & 10 \\ & 01 \end{aligned}$	1	--	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	5 5	$\begin{aligned} & \text { 3RT2017-1SB41 } \\ & \text { 3RT2017-1SB42 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2017-2SB41 } \\ & \text { 3RT2017-2SB42 } \end{aligned}$

1) When using contactors with IE3/IE4 motors, use contactors fitted with varistors instead of diodes. In the case of 5.5 kW coupling contactors of size S00, use 5.5 kW coupling contactors of size S0, see page 3/66. For more information about dimensioning and configuring, see page $3 / 7$.

Other voltages according to page $3 / 75$ on request.
Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW IF3/IE4 ready

DC operation =-=

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS	$=41 \mathrm{~B}$

3RT202.-1B. 40
Rated data
AC-2 and AC-3,
$t_{u}: 60^{\circ} \mathrm{C}$
Opera- Ratings of tional

3RT202.-2B. 40

AC-1, $t_{\mathrm{u}}: 40^{\circ} \mathrm{C}$ tional Opera- Ident. Version

Rated control supply voltage U_{s}
DC
\qquad
No.
current I_{e} up to

400 V
A kW A current I_{e} up to 690 V A motors at 50 Hz and 400 V

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail

Size SO

9	4	40	11	1	1	24	\checkmark	3RT2023-1BB40	-	3RT2023-2BB40
12	5.5	40	11	1	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	3RT2024-1BB40 3RT2024-1BM40	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	3RT2024-2BB40 3RT2024-2BM40
17	7.5	40	11	1	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	3RT2025-1BB40 3RT2025-1BM40	5	$\begin{aligned} & \text { 3RT2025-2BB40 } \\ & \text { 3RT2025-2BM40 } \end{aligned}$
25	11	40	11	1	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2026-1BB40 } \\ & \text { 3RT2026-1BM40 } \end{aligned}$	$\begin{aligned} & \text { b } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2026-2BB40 } \\ & \text { 3RT2026-2BM40 } \end{aligned}$
32	15	50	11	1	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2027-1BB40 } \\ & \text { 3RT2027-1BM40 } \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2027-2BB40 } \\ & \text { 3RT2027-2BM40 } \end{aligned}$
38	18.5	50	11	1	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	5	$\begin{aligned} & \text { 3RT2028-1BB40 } \\ & \text { 3RT2028-1BM40 } \end{aligned}$	5	$\begin{aligned} & \hline \text { 3RT2028-2BB40 } \\ & \text { 3RT2028-2BM40 } \end{aligned}$
With coil circuit plugged into front (varistor plugged in at the factory)										
9	4	40	11	1	1	24	5	3RT2023-1DB40	5	3RT2023-2DB40
12	5.5	40	11	1	1	24	5	3RT2024-1DB40	5	3RT2024-2DB40
17	7.5	40	11	1	1	24	5	3RT2025-1DB40	5	3RT2025-2DB40
25	11	40	11	1	1	24	5	3RT2026-1DB40	5	3RT2026-2DB40
32	15	50	11	1	1	24	5	3RT2027-1DB40	5	3RT2027-2DB40
38	18.5	50	11	1	1	24	5	3RT2028-1DB40	5	3RT2028-2DB40
With coil circuit plugged into front (diode assembly plugged in at the factory)										
9	4	40	11	1	1	24	\checkmark	3RT2023-1FB40	\checkmark	3RT2023-2FB40
12	5.5	40	11	1	1	24	-	3RT2024-1FB40	\checkmark	3RT2024-2FB40
17	7.5	40	11	1	1	24	-	3RT2025-1FB40	-	3RT2025-2FB40
25	11	40	11	1	1	24	-	3RT2026-1FB40	-	3RT2026-2FB40
32	15	50	11	1	1	24	-	3RT2027-1FB40	-	3RT2027-2FB40
38	18.5	50	11	1	1	24	-	3RT2028-1FB40	-	3RT2028-2FB40
With removable auxiliary switch										
9	4	40	22	2	2	24	-	3RT2023-1BB44	-	3RT2023-2BB44
12	5.5	40	22	2	2	24	-	3RT2024-1BB44	-	3RT2024-2BB44
17	7.5	40	22	2	2	24	-	3RT2025-1BB44	-	3RT2025-2BB44
25	11	40	22	2	2	24	-	3RT2026-1BB44	-	3RT2026-2BB44
32	15	50	22	2	2	24	-	3RT2027-1BB44	-	3RT2027-2BB44
38	18.5	50	22	2	2	24	-	3RT2028-1BB44	-	3RT2028-2BB44

Other voltages according to page 3/75 on request.
Accessories and spare parts, see pages 3/77 to 3/126.

DC operation =-=

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail
Size SO
With permanently mounted auxiliary switch and integrated coil circuit (varistor integrated at the factory)

12	$\mathbf{5 . 5}$	40	$\mathbf{2 2}$	2	2	24	2
17	$\mathbf{7 . 5}$	40	$\mathbf{2 2}$	2	2	24	5
25	$\mathbf{1 1}$	40	$\mathbf{2 2}$	2	2	24	5
32	$\mathbf{1 5}$	50	$\mathbf{2 2}$	2	2	24	5

With permanently mounted auxiliary switch and integrated coil circuit (diode assembly plugged in at the factory)

9	4	40	22	2	2	24	-	3RT2023-1FB44-3MA0	5	3RT2023-2FB44-3MA0
12	5.5	40	22	2	2	24	5	3RT2024-1FB44-3MAO	2	3RT2024-2FB44-3MA0
17	7.5	40	22	2	2	24	5	3RT2025-1FB44-3MA0	5	3RT2025-2FB44-3MA0
25	11	40	22	2	2	24	5	3RT2026-1FB44-3MA0	5	3RT2026-2FB44-3MA0
32	15	50	22	2	2	24	5	3RT2027-1FB44-3MAO	5	3RT2027-2FB44-3MA0
38	18.5	50	22	2	2	24	5	3RT2028-1FB44-3MAO	5	3RT2028-2FB44-3MA0
With voltage tap-off										
9	4	40	11	1	1	24	5	3RT2023-1BB40-0CC0	5	3RT2023-2BB40-0CC0
12	5.5	40	11	1	1	24	2	3RT2024-1BB40-0CC0	5	3RT2024-2BB40-0CC0
17	7.5	40	11	1	1	24	5	3RT2025-1BB40-0CC0	5	3RT2025-2BB40-0CC0
25	11	40	11	1	1	24	5	3RT2026-1BB40-0CC0	5	3RT2026-2BB40-0CC0
32	15	50	11	1	1	24	5	3RT2027-1BB40-0CC0	5	3RT2027-2BB40-0CC0
38	18.5	50	11	1	1	24	5	3RT2028-1BB40-0CC0	5	3RT2028-2BB40-0CC0

Other voltages according to page $3 / 75$ on request.
Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3 -pole up to 250 kW IE3/IE4 ready

DC operation for direct control by PLC =-=

- Coupling contactors with adapted power consumption
- Suitable for electronic PLC/F-PLC outputs
- Cannot be expanded with auxiliary switches

PU (UNIT, SET, M) = 1
PS* $=1$ unit
PG $=41 \mathrm{~B}$

3RT202.-1KB40

Rated data			Auxiliary contacts			Rated control supply voltage U_{s}	SD	Screw terminals	(1)	SD	Spring-loaded terminals	
$\begin{aligned} & \mathrm{AC}-2 \text { and } \mathrm{AC}-3, \\ & t_{\mathrm{u}}: 60^{\circ} \mathrm{C} \end{aligned}$		AC-1, $t_{\mathrm{u}}: 40^{\circ} \mathrm{C}$										
Operational	Ratings of three-phase	Operational	Ident. No.	Vers		DC						
current I_{e} up to	motors at 50 Hz and	current I_{e} up to						Article No.	Price per PU		Article No.	Price per PU
400 V	400 V	690 V										
A	kW	A		NO	NC	V	d			d		

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail

Size SO

With integrated coil circuit (varistor integrated in electronics at the factory)
(Cannot be expanded with auxiliary switches)
Operating range $\mathbf{0 . 7}$... $\mathbf{1 . 2 5} \times \boldsymbol{U}_{\mathbf{s}}$
power consumption of the solenoid coils $4.5 \mathbf{W}$ at 24 V

9	$\mathbf{4}$	40	$\mathbf{1 1}$	1	1	24	$>$	3RT2023-1KB40	-	3RT2023-2KB40
12	$\mathbf{5 . 5}$	40	$\mathbf{1 1}$	1	1	24	$>$	3RT2024-1KB40	5	3RT2024-2KB40
17	$\mathbf{7 . 5}$	40	$\mathbf{1 1}$	1	1	24	$>$	3RT2025-1KB40	-	3RT2025-2KB40
25	$\mathbf{1 1}$	40	$\mathbf{1 1}$	1	1	24	$>$	3RT2026-1KB40	$>$	3RT2026-2KB40
32	$\mathbf{1 5}$	50	$\mathbf{1 1}$	1	1	24	$>$	3RT2027-1KB40	5	3RT2027-2KB40

Other voltages according to page $3 / 75$ on request
Accessories and spare parts, see pages 3/77 to 3/126.

DC operation for direct control by PLC ===

- Coupling contactors with adapted power consumption
- Suitable for electronic PLC/F-PLC outputs with 2 A
- Can be expanded using front or lateral auxiliary switch ($1 \times$ left and $1 \times$ right)
PU (UNIT, SET, M) $=1$
$\begin{array}{ll}\text { PS* } & =1 \text { unit } \\ \text { PG } & =41 \mathrm{~B}\end{array}$

3RT203.-1KB40

Rated data			Auxiliary contacts		Rated control supply voltage U_{s} DC	SD	Screw terminals	(H)	SD	Spring-loaded terminals OO	
AC-2 and AC-3,$t_{\mathrm{u}}: 60^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{AC}-1, \\ & t_{\mathrm{u}}: 40^{\circ} \mathrm{C} \end{aligned}$									
Operational	Ratings of three-phase	Operational	Ident. No.	Version							
current I_{e} up to	motors at 50 Hz and	current I_{e} up to					Article No.	Price per PU		Article No.	Price per PU
400 V	400 V	690 V									
A	kW	A		NO NC	V	d			d		

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail
Size S2
With integrated coil circuit (varistor integrated in electronics at the factory)
Operating range $\mathbf{0 . 8} \ldots \mathbf{1 . 2} \times \boldsymbol{U}_{\mathbf{s}}$
closing power of the solenoid coils $21.5 \mathbf{W}$ at 24 V

41	$\mathbf{1 8 . 5}$	60	$\mathbf{1 1}$	1	1	24	$>$	3RT2035-1KB40	$>$	3RT2035-3KB40
50	$\mathbf{2 2}$	70	$\mathbf{1 1}$	1	1	24	$>$	3RT2036-1KB40	$>$	3RT2036-3KB40
65	$\mathbf{3 0}$	80	$\mathbf{1 1}$	1	1	24	$>$	3RT2037-1KB40	$>$	3RT2037-3KB40
80	$\mathbf{3 7}$	90	$\mathbf{1 1}$	1	1	24	$>$	3RT2038-1KB40	$>$	3RT2038-3KB40

For screw fixing and snap-on mounting
onto TH 35-15 and TH 75-15 standard mounting rails

Size S3

With integrated coil circuit (varistor integrated in electronics at the factory)
Operating range $\mathbf{0 . 8} \ldots \mathbf{1 . 2} \mathbf{x} \mathbf{U}_{\mathbf{s}}$,
closing power of the solenoid coils $\mathbf{2 5} \mathbf{~ W}$ at 24 V

| 80 | $\mathbf{3 7}$ | 125 | $\mathbf{1 1}$ | 1 | 1 | 24 | | 3RT2045-1KB40 | $>$ | 3RT2045-3KB40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 95 | $\mathbf{4 5}$ | 130 | $\mathbf{1 1}$ | 1 | 1 | 24 | $>$ | 3RT2046-1KB40 | 3RT2046-3KB40 | |

Other voltages according to page $3 / 75$ on request.
Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3 -pole up to 250 kW IE3/IE4 ready

AC/DC operation \approx

- Extended operating range of the solenoid coil 0.7 to $1.3 \times U_{s}$
- Reduced power consumption when closing and in the closed state

PU (UNIT, SET, M)	$=1$
PS*	$=1$ unit
PG	$=41 \mathrm{~B}$

3RT202.-1N. 30

Rated data			Auxiliary contacts		Rated control	SD	Screw terminals		SD	Spring-loaded terminals 0		
$\begin{aligned} & \mathrm{AC}-2 \text { and } \mathrm{AC}-3, \\ & t_{\mathrm{u}}: 60^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \mathrm{AC}-1, \\ & t_{\mathrm{u}}: 40^{\circ} \mathrm{C} \end{aligned}$			supply voltage U_{s}							
Operational	Ratings of three-phase	Operational	Ident. No.	Version	$\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \text { AC or DC } \end{aligned}$							
current I_{e} up to	motors at 50 Hz and	current I_{e} up to	1				Article No.	Price per PU		Article No.	Price per P	
400 V	400 V	690 V										
A	kW	A		NO NC	V	d			d			

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail
Size SO
With integrated coil circuit (varistor integrated in electronics at the factory)

12	5.5	40	11	1	1	$\begin{aligned} & 21 \ldots 28 \\ & 95 \ldots 130 \\ & 200 \ldots 280 \end{aligned}$	1 2 2
17	7.5	40	11	1	1	$21 \ldots 28$ $95 \ldots 130$ $200 \ldots 280$	1 2 2
25	11	40	11	1	1	$\begin{array}{ll} \hline 21 \ldots & 28 \\ 95 \ldots & 130 \\ 200 \ldots & 280 \end{array}$	2 2 5
32	15	50	11	1	1	$\begin{aligned} & 21 \ldots 28 \\ & 95 \ldots 130 \\ & 200 \ldots 280 \end{aligned}$	1 2 2
38	18.5	50	11	1	1	$\begin{array}{lll} 21 \ldots & 28 \\ 95 \ldots \ldots & 130 \\ 200 \ldots . & 280 \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \end{aligned}$

3RT2024-1NB30	2	3RT2024-2NB30
3RT2024-1NF30	2	3RT2024-2NF30
3RT2024-1NP30	2	3RT2024-2NP30
3RT2025-1NB30	5	3RT2025-2NB30
3RT2025-1NF30	5	3RT2025-2NF30
3RT2025-1NP30	2	3RT2025-2NP30
3RT2026-1NB30	2	3RT2026-2NB30
3RT2026-1NF30	5	3RT2026-2NF30
3RT2026-1NP30	5	3RT2026-2NP30
3RT2027-1NB30	2	3RT2027-2NB30
3RT2027-1NF30	5	3RT2027-2NF30
3RT2027-1NP30	5	3RT2027-2NP30
3RT2028-1NB30	5	3RT2028-2NB30
3RT2028-1NF30	5	3RT2028-2NF30
3RT2028-1NP30	5	3RT2028-2NP30

Other voltages according to page $3 / 75$ on request.
Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

IF3/IE4 ready SIRIUS 3RT contactors, 3 -pole up to 250 kW

AC/DC operation \simeq

- Extended operating range of the solenoid coil 0.8 to $1.1 \times U_{\mathrm{S}}$
- Reduced power consumption when closing and in the closed state

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail
Size S2
With integrated coil circuit
(varistor integrated in electronics at the factory)

41	18.5	60	11	1	1	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots 155 \\ & 175 \ldots . .280 \end{aligned}$	$\begin{aligned} & \text { } \\ & 5 \\ & 2 \end{aligned}$	3RT2035-1NB30 3RT2035-1NF30 3RT2035-1NP30	$\begin{aligned} & 8 \\ & 5 \\ & 5 \end{aligned}$	3RT2035-3NB30 3RT2035-3NF30 3RT2035-3NP30
50	22	70	11	1	1	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots 155 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & \text { } \\ & 2 \\ & 2 \end{aligned}$	3RT2036-1NB30 3RT2036-1NF30 3RT2036-1NP30	$\begin{aligned} & 7 \\ & 5 \\ & 5 \end{aligned}$	3RT2036-3NB30 3RT2036-3NF30 3RT2036-3NP30
65	30	80	11	1	1	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots 155 \\ & 175 \ldots .280 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \\ & 2 \end{aligned}$	3RT2037-1NB30 3RT2037-1NF30 3RT2037-1NP30	$\begin{aligned} & 7 \\ & 5 \\ & 2 \end{aligned}$	3RT2037-3NB30 3RT2037-3NF30 3RT2037-3NP30
80	37	90	11	1	1	$20 \ldots 33$ $83 \ldots 155$ $175 \ldots 280$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2038-1NB30 } \\ & \text { 3RT2038-1NF30 } \\ & \text { 3RT2038-1NP30 } \end{aligned}$	$\begin{aligned} & l \\ & x \\ & 2 \end{aligned}$	3RT2038-3NB30 3RT2038-3NF30 3RT2038-3NP30
With removable auxiliary switch and integrated coil circuit (varistor integrated in electronics at the factory)										
41	18.5	60	22	2	2	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots 155 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & \\ & 5 \\ & 5 \end{aligned}$	3RT2035-1NB34 3RT2035-1NF34 3RT2035-1NP34		--
50	22	70	22	2	2	$20 \ldots 33$ $83 \ldots 155$ $175 \ldots 280$	$\begin{aligned} & 7 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2036-1NB34 } \\ & \text { 3RT2036-1NF34 } \\ & \text { 3RT2036-1NP34 } \end{aligned}$		--
65	30	80	22	2	2	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots 155 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	3RT2037-1NB34 3RT2037-1NF34 3RT2037-1NP34		--
80	37	90	22	2	2	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots 155 \\ & 175 \ldots .280 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	3RT2038-1NB34 3RT2038-1NF34 3RT2038-1NP34		--
With permanently mounted auxiliary switch and integrated coil circuit (varistor integrated in electronics at the factory)										
41	18.5	60	22	2	2	$20 . .33$	-	3RT2035-1NB34-3MA0	2	3RT2035-3NB34-3MA0
50	22	70	22	2	2	$20 . . .33$	\checkmark	3RT2036-1NB34-3MA0	5	3RT2036-3NB34-3MAO
65	30	80	22	2	2	$20 . . .33$	2	3RT2037-1NB34-3MA0	5	3RT2037-3NB34-3MA0
80	37	90	22	2	2	$20 . . .33$	2	3RT2038-1NB34-3MA0	2	3RT2038-3NB34-3MA0
With voltage tap-off and integrated coil circuit (varistor integrated in electronics at the factory)										
41	18.5	60	11	1	1	20... 33	5	3RT2035-1NB30-0CC0	5	3RT2035-3NB30-0CC0
50	22	70	11	1	1	20... 33	5	3RT2036-1NB30-0CC0	5	3RT2036-3NB30-0CC0
65	30	80	11	1	1	$20 . . .33$	5	3RT2037-1NB30-0CC0	5	3RT2037-3NB30-0CC0
80	37	90	11	1	1	20... 33	5	3RT2038-1NB30-0CC0	5	3RT2038-3NB30-0CC0

Other voltages according to page $3 / 75$ on request.
Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW IE3/IE4 ready NFW

AC/DC operation \approx

- Extended operating range of the solenoid coil 0.8 to $1.1 \times U_{s}$
- Reduced power consumption when closing and in the closed state
- Solid-state operating mechanism with fail-safe control input for safety-related applications to SIL CL 3
- 24 V DC control signal input, e.g. for control via the fail-safe output module of a controller (F-PLC) or safety relay
- Attainable Safety Integrity Level (SIL):
- With one contactor: SIL CL 2 acc. to IEC 62061 or PL c acc. to ISO 13849-1
- With two contactors in series: SIL CL 3 acc. to IEC 62061 or PL e acc. to ISO 13849-1

For screw fixing and snap-on mounting
onto TH 35 standard mounting rail
Size S2
With integrated coil circuit
(varistor integrated in electronics at the factory)

41	18.5	60	01	--	1	$\begin{aligned} & 21 \ldots 33 \\ & 83 \ldots 150 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2035-1SB30 3RT2035-1SF30 3RT2035-1SP30	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2035-3SB30 3RT2035-3SF30 3RT2035-3SP30
50	22	70	01	--	1	$\begin{aligned} & 21 \ldots 33 \\ & 83 \ldots . .150 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2036-1SB30 3RT2036-1SF30 3RT2036-1SP30	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2036-3SB30 3RT2036-3SF30 3RT2036-3SP30
65	30	80	01	--	1	$\begin{aligned} & 21 \ldots 33 \\ & 83 \ldots . .150 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2037-1SB30 3RT2037-1SF30 3RT2037-1SP30	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2037-3SB30 3RT2037-3SF30 3RT2037-3SP30
80	37	90	01	--	1	$\begin{aligned} & 21 \ldots .33 \\ & 83 \ldots 150 \\ & 175 \ldots .280 \end{aligned}$	5 5 5	3RT2038-1SB30 3RT2038-1SF30 3RT2038-1SP30	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2038-3SB30 3RT2038-3SF30 3RT2038-3SP30

For screw fixing and snap-on mounting

onto TH 35-15 and TH 75-15 standard mounting rails
Size S3
With integrated coil circuit
(varistor integrated in electronics at the factory)

80	37	125	01	--	1	$\begin{aligned} & 21 \ldots 33 \\ & 83 \ldots 150 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 3 \end{aligned}$	3RT2045-1SB30 3RT2045-1SF30 3RT2045-1SP30	5 5 3	3RT2045-3SB30 3RT2045-3SF30 3RT2045-3SP30
95	45	130	01	--	1	$21 \ldots 33$ $83 \ldots 150$ $175 \ldots 280$	$\begin{aligned} & 5 \\ & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3RT2046-1SB30 } \\ & \text { 3RT2046-1SF30 } \\ & \text { 3RT2046-1SP30 } \end{aligned}$	5 5 3	3RT2046-3SB30 3RT2046-3SF30 3RT2046-3SP30
110	55	130	01	--	1	$\begin{aligned} & 21 \ldots 33 \\ & 83 \ldots 150 \\ & 175 \ldots .280 \end{aligned}$	5 5 3	3RT2047-1SB30 3RT2047-1SF30 3RT2047-1SP30	5 5 3	3RT2047-3SB30 3RT2047-3SF30 3RT2047-3SP30

Accessories and spare parts, see pages 3/77 to 3/126.

AC/DC operation \simeq

- Extended operating range of the solenoid coil 0.8 to $1.1 \times U_{\mathrm{S}}$
- Reduced power consumption when closing and in the closed state

```
PU (UNIT, SET, M) = 1
PS* 
PG = 41B
```


3RT204.-1N. 30

3RT204.-3N. 30

3RT204.-1N. 34

3RT204.-1NB34-3MAO

3RT204.-3NB34-3MA0

For screw fixing and snap-on mounting
onto TH 35-15 and TH 75-15 standard mounting rails
Size S3
With integrated coil circuit
(varistor integrated in electronics at the factory)

80	37	125	11	1	1	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots 155 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & \text { } \\ & 2 \\ & 5 \end{aligned}$	3RT2045-1NB30 3RT2045-1NF30 3RT2045-1NP30	$\begin{aligned} & 2 \\ & 5 \\ & 5 \end{aligned}$	3RT2045-3NB30 3RT2045-3NF30 3RT2045-3NP30
95	45	130	11	1	1	$20 \ldots 33$ $83 \ldots 155$ $175 \ldots 280$	$\begin{aligned} & \hline \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2046-1NB30 } \\ & \text { 3RT2046-1NF30 } \\ & \text { 3RT2046-1NP30 } \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2046-3NB30 } \\ & \text { 3RT2046-3NF30 } \\ & \text { 3RT2046-3NP30 } \\ & \hline \end{aligned}$
110	55	130	11	1	1	$\begin{aligned} & 20 \ldots .33 \\ & 83 \ldots 155 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & \hline \\ & 5 \\ & 5 \end{aligned}$	3RT2047-1NB30 3RT2047-1NF30 3RT2047-1NP30	$\begin{aligned} & 2 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2047-3NB30 3RT2047-3NF30 3RT2047-3NP30
With removable auxiliary switch and integrated coil circuit (varistor integrated in electronics at the factory)										
80	37	125	22	2	2	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots 155 \\ & 175 \ldots .280 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2045-1NB34 3RT2045-1NF34 3RT2045-1NP34		--
95	45	130	22	2	2	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots .155 \\ & 175 \ldots .280 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	3RT2046-1NB34 3RT2046-1NF34 3RT2046-1NP34		
110	55	130	22	2	2	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots . .155 \\ & 175 \ldots 280 \end{aligned}$	5 5 5	3RT2047-1NB34 3RT2047-1NF34 3RT2047-1NP34		
With permanently mounted auxiliary switch and integrated coil circuit (varistor integrated in electronics at the factory)										
80	37	125	22	2	2	$20 . .33$	5	3RT2045-1NB34-3MA0	5	3RT2045-3NB34-3MA0
95	45	130	22	2	2	$20 . . .33$	5	3RT2046-1NB34-3MA0	5	3RT2046-3NB34-3MA0
110	55	130	22	2	2	$20 . .33$	5	3RT2047-1NB34-3MA0	5	3RT2047-3NB34-3MAO
With voltage tap-off and integrated coil circuit (varistor integrated in electronics at the factory)										
80	37	125	11	1	1	20... 33	5	3RT2045-1NB30-0CCO	10	3RT2045-3NB30-0CCO
95	45	130	11	1	1	$20 . . .33$	5	3RT2046-1NB30-0CC0	5	3RT2046-3NB30-0CC0
110	55	130	11	1	1	$20 . .33$	5	3RT2047-1NB30-0CC0	5	3RT2047-3NB30-0CC0

Other voltages according to page $3 / 75$ on request.
Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW IF3/IE4 ready

AC/DC operation \approx

- Standard operating mechanism 3RT10...-.A
- For screw fixing
- Auxiliary and control conductors: Screw or spring-loaded terminals
- Main conductors: Busbar connections; a connection kit with screws, spring washers and nuts is enclosed.

$$
\begin{aligned}
\text { PU (UNIT, SET, M) } & =1 \\
& =1 \mathrm{unit} \\
& =41 \mathrm{~S}
\end{aligned}
$$

3RT105.-6A. 36

3RT106.-6A. 36

3RT107.-6A. 36

Standard operating mechanism with economy circuit for AC and DC
operation (switchover from closing coil to holding coil)
With integrated coil circuit (varistor integrated at the factory)

S6	115	55	75	110	160	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots \\ & \ldots 40 \end{aligned}$	$\stackrel{\rightharpoonup}{\nabla}$	3RT1054-6AF36 3RT1054-6AP36	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1054-2AF36 3RT1054-2AP36
	150	75	90	132	185	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots \\ & \hline 240 \end{aligned}$		3RT1055-6AF36 3RT1055-6AP36	5	3RT1055-2AF36 3RT1055-2AP36
	185	901)	110	160	215	2	2	$\begin{array}{lll} 110 \ldots & 127 \\ 220 & \ldots & 240 \end{array}$	$>$	$\begin{aligned} & \text { 3RT1056-6AF36 } \\ & \text { 3RT1056-6AP36 } \end{aligned}$	5	$\begin{aligned} & \text { 3RT1056-2AF36 } \\ & \text { 3RT1056-2AP36 } \end{aligned}$
S10	225	110	160	200	275	2	2	$\begin{array}{lll} 110 \ldots & 127 \\ 220 \ldots & 240 \end{array}$		3RT1064-6AF36 3RT1064-6AP36	5	3RT1064-2AF36 3RT1064-2AP36
	265	132	160	250	330	2	2	$\begin{array}{lll} 110 \ldots & 127 \\ 220 & \ldots & 240 \end{array}$	$>$	3RT1065-6AF36 3RT1065-6AP36	5	$\begin{aligned} & \text { 3RT1065-2AF36 } \\ & \text { 3RT1065-2AP36 } \end{aligned}$
	300	1601)	200	250	330	2	2	$\begin{array}{lll} 110 \ldots & 127 \\ 220 \ldots & 240 \end{array}$	$\stackrel{\rightharpoonup}{>}$	$\begin{aligned} & \text { 3RT1066-6AF36 } \\ & \text { 3RT1066-6AP36 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1066-2AF36 } \\ & \text { 3RT1066-2AP36 } \end{aligned}$
S12	400	200	250	400	430	2	2	$\begin{array}{lll} 110 \ldots & 127 \\ 220 \ldots & \ldots 40 \end{array}$		$\begin{aligned} & \text { 3RT1075-6AF36 } \\ & \text { 3RT1075-6AP36 } \end{aligned}$	5	$\begin{aligned} & \text { 3RT1075-2AF36 } \\ & \text { 3RT1075-2AP36 } \end{aligned}$
	500	250 ${ }^{1)}$	355	400	610	2	2	$\begin{array}{lll} 110 \ldots & 127 \\ 220 \ldots & 240 \end{array}$	$>$	3RT1076-6AF36 3RT1076-6AP36	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1076-2AF36 3RT1076-2AP36

1) When using 3RT10.6-.A... contactors with IE3/IE4 motors from 8.5 times the starting current, use the versions with solid-state operating mechanism 3RT10.6-.N..., see page 3/74.
For more information about dimensioning and configuring, see page 3/7.

Other voltages according to page 3/76 on request.
Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

IE3/IE4 ready SIRIUS 3RT contactors, 3-pole up to 250 kW

AC/DC operation \simeq

- Solid-state operating mechanism with fail-safe control input for safety-related applications to SIL CL 3
- 24 V DC control signal input, e.g. for control via the fail-safe output module of a controller (F-PLC) or safety relay
- Attainable Safety Integrity Level (SIL):
- With one contactor: SIL CL 2 acc. to IEC 62061 or PL c acc. to ISO 13849-1
-With two contactors in series: SIL CL 3 acc. to IEC 62061 or PL e acc. to ISO 13849-1
- Version with removable lateral auxiliary switches or permanently mounted auxiliary switches
- For screw fixing
- Auxiliary and control conductors: Screw terminals
- Main conductors: Busbar connections; a connection kit with screws, spring washers and nuts is enclosed.

For more information on safety systems, see page 11/1 onwards

3RT105.-6S. 36

3RT106.-6S.36

3RT107.-6S. 36

3RT107.-6S.36-3PA0

Size	Rated data according to IEC 60947-4-1 AC-3, $t_{\mu}: 60^{\circ} \mathrm{C}$		Auxiliary contacts, lateral	Rated control	SD	Screw terminals	(1)		PS*	
			supply voltage U_{s}							
	Operational current I_{e}	Ratings of three-phase motors at 50 Hz and		Version						$\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & \text { AC or DC } \end{aligned}$
	up to 500 V	400 V				Article No.	Price per PU			
	A	kW	NO NC	V						

Solid-state operating mechanism
With two removable laterally mounted auxiliary switches
With integrated coil circuit (varistor integrated in electronics at the factory)

S6	115	55	2	2	$\begin{aligned} & 96 \ldots . .127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1054-6SF36 3RT1054-6SP36	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	150	75	2	2	$\begin{array}{ll} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1055-6SF36 3RT1055-6SP36	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	185	90	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1056-6SF36 3RT1056-6SP36	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
S10	225	110	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1064-6SF36 3RT1064-6SP36	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	265	132	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1065-6SF36 3RT1065-6SP36	1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
	300	160	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1066-6SF36 3RT1066-6SP36	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
S12	400	200	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1075-6SF36 3RT1075-6SP36	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	500	250	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	5 5	3RT1076-6SF36 3RT1076-6SP36	1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$

With two permanently laterally mounted auxiliary switches
With integrated coil circuit (varistor integrated in electronics at the factory)

S6	115	55	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1054-6SF36-3PA0 3RT1054-6SP36-3PA0	1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	150	75	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	5 5	3RT1055-6SF36-3PA0 3RT1055-6SP36-3PA0	1 1	1 unit 1 unit	$41 \mathrm{~B}$
	185	90	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1056-6SF36-3PA0 3RT1056-6SP36-3PA0	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
S10	225	110	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT1064-6SF36-3PA0 } \\ & \text { 3RT1064-6SP36-3PA0 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	265	132	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	5 5	$\begin{aligned} & \text { 3RT1065-6SF36-3PA0 } \\ & \text { 3RT1065-6SP36-3PA0 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	300	160	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1066-6SF36-3PA0 } \\ & \text { 3RT1066-6SP36-3PAO } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
S12	400	200	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	5 5	$\begin{aligned} & \text { 3RT1075-6SF36-3PA0 } \\ & \text { 3RT1075-6SP36-3PA0 } \end{aligned}$	1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	500	250	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	5 5	$\begin{aligned} & \text { 3RT1076-6SF36-3PA0 } \\ & \text { 3RT1076-6SP36-3PA0 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$

Accessories and spare parts, see pages 3/77 to 3/126.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW IE3/IE4 ready

AC/DC operation \approx

- Solid-state operating mechanism
- 3RT10..-.N with 24 V DC control signal input

3RT10..-.P with 24 V DC control signal input and with remaining lifetime indicator (RLT)

- For screw fixing
- Auxiliary and control conductors: Screw or spring-loaded terminals
- Main conductors: Busbar connections; a connection kit with screws, spring washers and nuts is enclosed.

```
PU (UNIT, SET, M) = 1
PS* =1 unit
PG = 41B
```


Solid-state operating mechanism

With 24 V DC control signal input

e.g. for control by PLC

With integrated coil circuit (varistor integrated in electronics at the factory)

S6	115	55	75	110	160	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots . .277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1054-6NF36 } \\ & \text { 3RT1054-6NP36 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1054-2NF36 } \\ & \text { 3RT1054-2NP36 } \end{aligned}$
	150	75	90	132	185	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	2	3RT1055-6NF36 3RT1055-6NP36	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1055-2NF36 3RT1055-2NP36
	185	90	110	160	215	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	5	$\begin{aligned} & \text { 3RT1056-6NF36 } \\ & \text { 3RT1056-6NP36 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT1056-2NF36 } \\ & \text { 3RT1056-2NP36 } \end{aligned}$
S10	225	110	160	200	275	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RT1064-6NF36 } \\ & \text { 3RT1064-6NP36 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1064-2NF36 } \\ & \text { 3RT1064-2NP36 } \end{aligned}$
	265	132	160	250	330	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	2	$\begin{aligned} & \text { 3RT1065-6NF36 } \\ & \text { 3RT1065-6NP36 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1065-2NF36 } \\ & \text { 3RT1065-2NP36 } \end{aligned}$
	300	160	200	250	330	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	3RT1066-6NF36 3RT1066-6NP36	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1066-2NF36 3RT1066-2NP36
S12	400	200	250	400	430	2	2	$\begin{array}{ll} 96 \ldots & 127 \\ 200 & 277 \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	3RT1075-6NF36 3RT1075-6NP36	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1075-2NF36 } \\ & \text { 3RT1075-2NP36 } \end{aligned}$
	500	250	355	400	610	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	3RT1076-6NF36 3RT1076-6NP36	$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1076-2NF36 } \\ & \text { 3RT1076-2NP36 } \end{aligned}$

For 24 V DC control signal input • with remaining lifetime indicator (RLT)
e.g. for control by PLC

With integrated coil circuit (varistor integrated in electronics at the factory)

S6	115	55	75	110	160	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1054-6PF35 } \\ & \text { 3RT1054-6PP35 } \end{aligned}$	--
	150	75	90	132	185	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$	3RT1055-6PF35 3RT1055-6PP35	--
	185	90	110	160	215	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT1056-6PF35 } \\ & \text { 3RT1056-6PP35 } \end{aligned}$	--
S10	225	110	160	200	275	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1064-6PF35 3RT1064-6PP35	
	265	132	160	250	330	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1065-6PF35 } \\ & \text { 3RT1065-6PP35 } \end{aligned}$	--
	300	160	200	250	330	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$	3RT1066-6PF35 3RT1066-6PP35	--
S12	400	200	250	400	430	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1075-6PF35 } \\ & \text { 3RT1075-6PP35 } \end{aligned}$	--
	500	250	355	400	610	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 20 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1076-6PF35 } \\ & \text { 3RT1076-6PP35 } \end{aligned}$	

Other voltages according to page 3/76 on request.

Options

Rated control supply voltages for 3RT20 contactors, possible on request (change of the 10th and 11th digits of the Article No.)
Delivery time on request

Rated control supply voltage U_{s}	Contactor type Size	$\begin{aligned} & \text { 3RT201, 3RH2 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT202 } \\ & \text { S0 } \end{aligned}$	3RT203 S2	$\begin{aligned} & \text { 3RT204 } \\ & \text { S3 } \end{aligned}$

Sizes S00 to S3

AC operation ${ }^{1)}$

Solenoid coils for 50 Hz
(exception: size S00: 50 and $60 \mathrm{~Hz}^{2}$)

24 V AC	B0	B0	B0	B0
42 V AC	D0	D0	D0	D0
48 V AC	H0	H0	H0	H0
110 V AC	F0	F0	F0	F0
230 V AC	PO	PO	PO	PO
240 V AC	U0	U0	U0	U0
400 V AC	V0	V0	Vo	V0
Solenoid coils for 50 and $60 \mathrm{~Hz}^{\mathbf{2}}$				
24 V AC	B0	C2	C2	C2
42 V AC	D0	D2	D2	D2
48 V AC	H0	H2	H2	H2
110 V AC	F0	G2	G2	G2
220 V AC	N2	N2	N2	N2
230 V AC	PO	L2	L2	L2
$\begin{aligned} & \text { Solenoid coils (for USA and (Canada }{ }^{3)} \text {) } \\ & 50 \mathrm{~Hz} \quad 60 \mathrm{~Hz} \end{aligned}$				
110 V AC 120 V AC 220 V AC 240 VAC	$\begin{aligned} & \text { K6 } \\ & \text { P6 } \end{aligned}$	$\begin{aligned} & \text { K6 } \\ & \text { P6 } \end{aligned}$	K6 P6	K6 P6

$\begin{aligned} & \text { Solenoid } \mathrm{C} \\ & 50 / 60 \mathrm{~Hz}^{4} \end{aligned}$	$\begin{aligned} & \text { apan) } \\ & 60 \mathrm{~Hz}^{5} \end{aligned}$				
$\begin{aligned} & 100 \text { V AC } \\ & 200 \text { V AC } \\ & 400 \text { V AC } \end{aligned}$	$\begin{aligned} & 110 \text { V AC } \\ & 220 \text { V AC } \\ & 440 \text { V AC } \end{aligned}$	$\begin{aligned} & \text { G6 } \\ & \text { N6 } \\ & \text { R6 } \end{aligned}$	$\begin{aligned} & \text { G6 } \\ & \text { N6 } \\ & \text { R6 } \end{aligned}$	$\begin{aligned} & \text { G6 } \\ & \text { N6 } \\ & \text { R6 } \end{aligned}$	$\begin{aligned} & \text { G6 } \\ & \text { N6 } \\ & \text { R6 } \end{aligned}$

DC operation ${ }^{1)}$

$12 \vee ~ D C ~$	A4	A4	--
$24 \vee$ DC	B4	B4	--
$42 \vee$ DC	D4	D4	--
$48 \vee$ DC	W4	W4	--
$60 \vee$ DC	E4	F4	--
$110 \vee$ DC	F4	G4	--
$125 \vee D C$	G4	M4	--
$220 \vee$ DC	M4	P4	--
$230 \vee D C$	P4		--

Examples

AC operation

3RT2023-1AP00 3RT2023-1AG20 3RT2025-2BB40 3RT2025-2BG40

Contactor with screw terminals; with solenoid coil for 50 Hz for rated control supply voltage 230 VAC Contactor with screw terminals; with solenoid coil for $50 / 60 \mathrm{~Hz}$ for rated control supply voltage 110 V AC.

DC operation

Contactor with spring-loaded terminals; for rated control supply voltage 24 V DC. Contactor with spring-loaded terminals; for rated control supply voltage 125 V DC.

1) For deviating coil voltages and operating ranges of sizes SOO and SO , a SITOP 24 V DC power supply with wide-range input can be used for the coil control, see page 15/1 and Catalog KT 10.1.
2) Coil operating range

- At $50 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{\mathrm{s}}$,
- At $60 \mathrm{~Hz}: 0.85$ to $1.1 \times U_{\text {s }}$

3) Coil operating range

- Size S00:

At $50 \mathrm{~Hz}: 0.85$ to $1.1 \times U_{\text {s }}$.
At $60 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{\mathrm{S}}$,

- Sizes S0 to S3: At 50 Hz and $60 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{\mathrm{s}}$
${ }^{4)}$ Coil operating range
- Size S00:

At $50 / 60 \mathrm{~Hz}: 0.85$ to $1.1 \times U_{\mathrm{s}}$

- Size SO:

At $50 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{S}$
At $60 \mathrm{~Hz}: 0.85$ to $1.1 \times U_{s}$
5) Coil operating range at $60 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{S}$.

| Rated control supply
 voltage | Contactor
 type | Rated control supply
 voltage | Contactor
 type | 3RT203.-. |
| :--- | ---: | :--- | :--- | ---: | :--- |

$U_{S \text { min }}$ to $U_{S} \max ^{1)}$
Size S0
zes S00 to S3

AC/DC operation (50/60 Hz AC or DC)

$21 . .28 \mathrm{~V}$ AC/DC	B3	$20 . .33 \mathrm{~V}$ AC/DC	B3	B3
95... 130 V AC/DC	F3	48 ... 80 V AC/DC	E3	E3
$200 . . .280$ V AC/DC ${ }^{2}$)	P3	83... 155 V AC/DC	F3	F3
		175... 280 V AC/DC	P3	P3
1) Coil operating range - Size S0: $0.7 \times U_{\mathrm{s}} \mathrm{m}$ - Sizes S2 and S3: 0		2) The following a	$U_{\text {s m }}$	li

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT contactors, 3-pole up to 250 kW

Rated control supply voltages for 3RT10 contactors,
 possible on request (change of the 10th and 11th digits of the Article No.)

Delivery time on request

Rated control supply voltage	Contactor type	$\begin{aligned} & \text { 3RT105.-.A, } \\ & \text { 3RT106.-.A, } \\ & \text { 3RT107.-.A } \end{aligned}$	Rated control supply voltage	Contactor type	$\begin{aligned} & \text { 3RT105.-.N, } \\ & \text { 3RT106.-.N, } \\ & \text { 3RT107.-.N } \end{aligned}$	$\begin{aligned} & \text { 3RT105.-.P, } \\ & \text { 3RT105.-S, } \\ & \text { 3RT106.-.P, } \\ & \text { 3RT106.-S, } \\ & \text { 3RT107.-.P, } \\ & \text { 3RT107.-.S } \end{aligned}$
$U_{\text {s min }}$ to $U_{s \text { max }}$	Sizes	S6 to S12	$U_{S \text { min }}$ to $U_{S \text { max }}$	Sizes	S6 to S12	
Sizes S6 to S12						
$A C / D C$ operation ($50 / 60 \mathrm{~Hz} \mathrm{AC}$ or DC) and operating range $0.8 \times U_{\mathrm{s} \text { min }}$ to $1.1 \times U_{\mathrm{s} \text { max }}$						
Standard operating mechanism			Solid-state operating	hanism		
23 ... 26 V AC/DC 42 ... 48 V AC/DC 110 ... 127 V AC/DC 200 ... 220 V AC/DC 220 ... 240 V AC/DC		$\begin{aligned} & \text { B3 } \\ & \text { D3 } \\ & \text { F3 } \\ & \text { M3 } \\ & \text { P3 } \end{aligned}$	21 ... 27.3 V AC/DC 96 ... 127 V AC/DC 200 ... 277 V AC/DC		$\begin{aligned} & \text { B3 } \\ & \text { F3 } \\ & \text { P3 } \end{aligned}$	$\begin{aligned} & \overline{--} \\ & \text { F3 } \\ & \text { P3 } \end{aligned}$
$\begin{aligned} & 240 \ldots 277 \text { V AC/DC } \\ & 380 \ldots 420 \vee \mathrm{AC/DC} \\ & 440 \ldots 480 \vee \mathrm{AC} / \mathrm{DC} \\ & 500 \ldots 500 \mathrm{AC} \\ & 575 \ldots 600 \mathrm{~V} \text { AC/DC } \end{aligned}$		$\begin{aligned} & \text { U3 } \\ & \text { V3 } \\ & \text { R3 } \\ & \text { S3 } \\ & \text { T3 } \end{aligned}$				

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > General data

Overview

Extensive accessories and spare parts are available for SIRIUS 3RT power contactors and SIRIUS 3RH2 contactor relays.

These components are easily fitted to the contactors without the use of any tools according to requirements.

Overview graphics with mountable accessories:

- 3RT2 contactors, see pages $3 / 8$ to $3 / 11$
- 3RT10, 3RT12 and 3RT14 contactors, see pages $3 / 12$ to 3/16
- 3RH2 contactor relays, see page 5/4

More information

TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=Contactor

Version	For contactors		Selection and ordering data
	3RT2, sizes S00 to S3; 3RH2, size $\mathbf{S 0 0}$	3RT105 to 3RT107, 3RT126 and 3RT127, 3RT145 to 3RT147; sizes S6 to S12	
Accessories for 3RT contactors and 3RH2 contactor relays			
Auxiliary switches			
Instantaneous	3RH29.1	3RH19.1	3/89 ... 3/101
Delayed			
- Pneumatic time-delay auxiliary switches	3RT2926-2P.. 1	--	3/102
- Solid-state time-delay auxiliary switches	3RA2813, 3RA2814, 3RA2815	3RT1926-2E/-2F/-2G	3/102, 3/103
Surge suppressors			
- Without LED	3RT29.6-1B/-1C/-1D/-1E	3RT1956-1C	3/104, 3/105
- With LED	3RT29.6-1J/-1L/-1M	--	3/105

Modules for contactor control
Coupling links for control by PLC \quad 3RH29.4-.GP11 \quad--

- For direct on-line starting: ON delay or OFF-delay
- For star-delta (wye-delta) starting

3RA27 function modules for IO-Link or AS-Interface

- For direct-on-line, reversing or star-delta (wye-delta) starting

Mechanical latching blocks
OFF-delay devices for contactors with AC/DC and DC operation
Link modules

Link modules from motor starter protector to contactor	3RA.9.1	--	7/62
Safety main current connectors for two contactors	3RA29.6-1A	--	3/111
Assembly kits - For reversing contactor assemblies - For contactor assemblies for star-delta (wye-delta) starting	$\begin{aligned} & \text { 3RA29.3-2AA. } \\ & \text { 3RA29..-2BB., 3RA29.3-2C } \end{aligned}$	3RA19.3-2A 3RA1953-3G, 3RA19.3-2./-3.	$\begin{aligned} & 3 / 111 \\ & 3 / 112,3 / 113 \end{aligned}$
Single wiring modules	3RA.9.3-3.A.	3RA19.3-3.	3/114
Star jumpers (links for paralleling), 3-pole	3RT.9.6-4BA3.	3RT19.6-4BA31	3/114
Mechanical interlock kits for two contactors	3RA29.2-2H	--	3/115
Mechanical interlocks for contactor assemblies	3RA2934-2B	3RA1954-2.	3/115
Mechanical connectors for contactor assemblies	3RA29.2-2.	3RA1932-2D	3/115

Connection modules/adapters

Links for paralleling for main circuits
1-phase infeed terminals
3-phase infeed terminals

- With increased clearances and creepage distances

3-phase busbars
Terminal blocks for connecting auxiliary conductors to main terminals

- Box terminal blocks
- Box terminal for auxiliary conductor connection, 1-pole
- Auxiliary terminals, 3-pole

Solder pin adapters for mounting contactors onto printed circuit boards Coil connection modules for connections from top or from bottom

3RT.9.6-4BB.1	--	$3 / 116$
3RA2943-3L	--	$3 / 117$
3RA2913-3K, 3RV29.5-5A.	--	$3 / 117$
3RV2935-5E	--	$3 / 117$
3RV1915-1AB	--	$3 / 117$
3RT2946-4G	3RT19..-4G	$3 / 117$
--	3TX7500-0A	$3 / 117$
3RT2946-4F	--	$3 / 117$
3RT1916-4KA.	--	$3 / 118$
3RT2926-4R.1.	--	$3 / 118$

Connection module (adapter and plug) for contactors with screw terminals

- Adapters
- Motor feeder connector

3RT19.6-4RD01
-- 3/118
3RT1900-4RE01 -- 3/118

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > General data

Version	For contactors		Selection and ordering data
	3RT2, sizes $\mathbf{S 0 0}$ to $\mathbf{S 3}$; 3RH2, size $\mathbf{S 0 0}$	3RT105 to 3RT107, 3RT126 and 3RT127, 3RT145 to 3RT147; sizes S6 to S12	
Accessories for 3RT contactors and 3RH2 contactor relays (continued)			
Covers			
Terminal covers	3RT1946-4EA1, 3RT29.6-4EA.	3RT1956-4EA., 3RT1966-4EA., 3TX65.6-3B	3/119
Sealable covers	3RT2916-4MA10	3RT1926-4MA10	3/119
Miscellaneous accessories			
Base plates - For reversing contactor assemblies - For contactor assemblies for star-delta (wye-delta) starting	3RA29.2-2F	3RT19.2-2A 3RA19.2-2.	$\begin{aligned} & 3 / 120 \\ & 3 / 120 \end{aligned}$
Adapters for screw fixing	3RT1926-4P	--	3/120
Connection kit for one complete contactor	--	3RT19..-4PA00	3/120
EMC suppression modules	3RT2916-1P	--	3/120
Additional load modules	3RT2916-1GA00	--	3/121
LED modules for displaying contactor operation	3RT2926-1QT00	3RT1926-1QT00	3/121
Control kit	3RT29.6-4MC00	--	3/121
Insulation stop for securely holding back the conductor insulation for conductors up to $1 \mathrm{~mm}^{2}$	3RT2916-4JA02	3RT1916-4JA02	3/122
Tools for opening spring-loaded terminals	3RA2908-1A	3RA2908-1A	3/122
Blank labels	3RT2900-1SB. 0	3RT2900-1SB. 0	3/122
Spare parts for 3RT2 contactors			
Solenoid coils	3RT29..-5... 1	--	3/123, 3/124
Withdrawable coils	--	3RT19..-5...	3/125
Contacts with fixing parts	3RT29..-6.	3RT19..-6.	3/126
Arc chutes	--	3RT19..-7.	3/126

Auxiliary switches

The auxiliary switches can be designed as positively driven contacts in 3RH contactor relays or also as mirror contacts in the case of 3RT power contactors.
For more information on positively driven operation and mirror contacts, see Manuals \rightarrow "More information", page 3/84, and in the selection and ordering data, page 3/89 onwards.

Solid-state time-delay auxiliary switches for mounting onto 3RT2 contactors and 3RH2 contactor relays

See pages 3/84 and 3/102
The 3RA28 solid-state time-delay auxiliary switches which can be mounted onto the contactor are designed for applications in the range from 24 to 240 V AC/DC (wide voltage range). Both the electrical and mechanical connection are made by simple snapping on and locking.

The time-delay auxiliary switch is supplied with power directly by two plug-in contacts through the coil terminals of the contactor, in parallel with A./A2.

A protection circuit (varistor) is integrated in each module.
A sealable cover is available to protect against careless adjustment of the set times.

Note:
Mounting more auxiliary switches onto the contactor is not permitted.

Surge suppressors

- Without LED (also for spring-loaded terminals) Sizes S00 to S3, see page 3/104
- With LED (also for spring-loaded terminals) Sizes S00 to S3, see page 3/105

All 3RT2 contactors and 3RH2 contactor relays can be retrofitted with RC elements or varistors for damping opening surges in the coil. Diodes or diode assemblies (comprising suppression diodes and Zener diodes for short break times) can be used.
The surge suppressors are plugged onto the front of size S00 contactors. Space is provided for them next to a snap-on auxiliary switch.

Varistors, RC elements or diode assemblies can be plugged onto the front of size S0 to S3 contactors. Exception: For size S3, the RC element is inserted on the front into the recesses to the left of the connection block.
Coupling contactors are supplied either without overvoltage damping or with a suppressor diode, varistor or diode connected as standard, according to the version.

Note:

The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are attenuated against voltage peaks (suppression diode $6 x$ to 10x; diode assemblies $2 x$ to $6 x$; varistor +2 to 5 ms).

Coupling links for control by PLC

See pages 3/86 and 3/106

- Operation with 24 V DC
- Operating range 17 to 30 V
- Low power consumption of 0.5 W
- An LED indicates the switching state.

The 3RH2924-1GP11 coupling link has an integrated surge suppressor (varistor) for the contactor coil being switched and is mounted onto the size SO contactor coil via a coil connection module.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > General data

3RA28 function modules for mounting onto 3RT2 contactors and 3RH2 contactor relays

See pages 3/87 and 3/107

Simply by being plugged in place, the SIRIUS function modules enable different functionalities required for the assembly of starters to be realized in the feeder. The function modules and wiring kits thus help to reduce the wiring work within the feeder practically to zero.
SIRIUS function modules for direct-on-line starting
The electronic timing relays which can be mounted onto the contactor are available in these versions:

- Sizes S00 and SO for applications in the range from 24 to 240 V AC/DC (wide voltage range)
- Sizes S2 and S3 for applications in either the range from 24 to 90 V AC/DC or 90 to 240 V AC/DC

Both the electrical and mechanical connection are made by simple snapping on and locking.
A protection circuit (varistor) is integrated in each module.
The electronic timing relay with semiconductor output uses two contact legs to actuate the contactor underneath by means of a semiconductor after the set time t has elapsed.

The switching state feedback is performed by a mechanical switching state indicator (plunger). In addition, the auxiliary switches in the contactors are freely accessible and can be used for feedbacks to the control system or for signal lamps.
A sealable cover is available to protect against careless adjustment of the set times.
The snap-on function modules for direct-on-line starting are used above all for realizing timing functions independently of the control system.
With the OFF-delay variant of the timing relay it is possible for example for the fan motor for cooling a main drive to be switched off with a delay so that sufficient cooling after operation is guaranteed; the programmer of the control system does not need to worry about such technical details of the plant.
The ON-delay timing relays enable for example the time-delayed starting of several drives so that the summation starting current does not rise too high, which could result in voltage failure.
The use of snap-on function modules for direct-on-line starting results in the following advantages:

- Reduction of control current wiring
- Prevention of wiring errors
- Reduction of testing costs
- Implementation of timing functions independently of the control system
- Less space required in the control cabinet compared to a separate timing relay
- No additive protection circuit required (varistor integrated)

Assembly of reversing starters
We offer ready-made wiring kits for the assembly of reversing starters. Use of these wiring kits offers further advantages, see page 3/153.

SIRIUS function modules for star-delta (wye-delta) starting
Both interlocking and timing functions are required for the assembly of star-delta (wye-delta) starters. With the function modules for star-delta (wye-delta) starting and the matching link modules for the main circuit, these starters can be assembled easily and with absolutely no errors.
The entire sequence in the control circuit is integrated in the snap-on modules. This covers:

- An adjustable star time t from 0.5 to 60 s
- A non-adjustable dead interval of 50 ms
- Electrical contacting of the contactors by means of coil pick-off (contact legs)
- Feedback of the switching state at the contactor using a mechanical switch position indicator (plunger)
- Electrical interlocking between the contactors

These modules do not require their own terminals and can therefore be used for contactors with both screw and spring-loaded terminals in all the sizes S00 to S3. To start the star-delta (wyedelta) starter, only the first of the three contactors (line contactor) is actuated, like in the case of a direct-on-line starter. All other functions then take place inside the individual modules.
This also offers advantages if the timing function was previously implemented in a controller, as it again results in a significant reduction in the number of PLC outputs, the programming work and the wiring outlay.
The kits for the main circuit include the mechanical interlock, the star jumper, the wiring modules at the top and at the bottom, and the required connectors or connecting clips.

A protection circuit (varistor) is integrated in the basic module.
The function modules for star-delta (wye-delta) starting are mostly used where current-limiting measures for starting a drive are required and a high level of availability is essential at the same time. This technology has been used with success for several decades and has the additional advantage of requiring relatively little know-how. Through the use of function modules, the assembly work with simple standard components is even easier and absolutely error-free.
The use of function modules for star-delta (wye-delta) starting results in the following advantages:

- Operation solely through the line contactor A1/A2 - no further control current wiring needed
- Prevention of wiring errors
- Reduction of testing costs
- Integrated electrical interlocking saves costs and prevents errors
- Less space needed in the control cabinet compared to using a separate timing relay
- Adjustable starting in star mode from 0.5 to 60 s
- Independent of the contactor's control supply voltage (24 to 240 V AC/DC)
- Varistor integrated - no additive protection circuit required
- Mechanically coded assembly enables easy configuration and reliable wiring
- Fewer versions - one module kit for screw and spring-loaded connection and for all the contactor sizes S00 to S3
- Mechanical interlocking (with wiring kit for the main circuit)

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > General data

SIRIUS 3RA27 function modules for IO-Link or AS-Interface for mounting onto 3RT2 contactors

See pages 3/88 and 3/108

The SIRIUS 3RA27 function modules enable the assembly of starters and contactor assemblies for direct-on-line, reversing and star-delta (wye-delta) starting without any additional, complicated wiring of the individual components. They include the key control functions e.g. timing and interlocking, required for the particular feeder, and can be connected to the control system via either IO-Link or AS-Interface.

The electrical and mechanical connection to the contactor is established by snapping on and locking the respective modules. An additive protection circuit for the individual contactors can be dispensed with completely because a varistor is integrated in the modules. Feedback from the contactor contacts is performed with Hall sensors which provide reliable feedback concerning the switching state even under extremely dusty conditions.

The starters are connected to the higher-level control system through IO-Link, with the possibility of connecting up to four starters as a group to one port of the IO-Link master, or optionally via AS-Interface, specification V2.1 or higher, in A/B technology. As a result, up to 62 starters can be connected to one master and the address is entered in the normal manner with an addressing unit.

Through this type of connection to the control system a maximum of wiring is saved. In the case of AS-Interface, the wiring amounts to the control supply voltage and the two individual wires for AS-Interface.
The following essential signals are thus transmitted:

- Availability of the feeder in response to an indirect inquiry from the motor starter protector/circuit breaker
- Starter control
- Feedback concerning the switching state of the starter

Signal transmission through IO-Link

[^12]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > General data

The inquiry from the motor starter protector/circuit breaker does not take place through additive wiring between the auxiliary switch and the module but by means of a voltage inquiry at the contactor input.

This requires special versions of the 3RT20..-.....-OCCO contactors with voltage tap-off (see pages 3/61, 3/65, 3/69 and 3/71).

Availability signal through voltage tap-off
The following benefits result from the use of SIRIUS 3RA27 function modules:

- Reduction of control current wiring. In the case of IO-Link to no more than three cables for four feeders.
- Elimination of testing costs and wiring errors
- Reduction of configuration work
- Parameter server functionality
- Integration in TIA means unambiguous IO-Link diagnostics if a fault occurs
SIRIUS 3RA2711 function modules for IO-Link for mounting onto 3RT2 contactors

By grouping up to four starters, it is possible to connect up to 16 starters to one master of the ET 200SP or S7-1200. In this case all the signals of the individual controls are made available directly in the process image of the input through only three individual wires per starter group. If the same potential is present

- Dispensing with IO modules saves space in the control cabinet
- All essential timing and interlocking functions for reversing duty and star-delta (wye-delta) starting are integrated
- No additive protection circuit required

For more information on IO-Link and AS-Interface, see "Industrial communication", page 2/1 onwards.

Group formation with IO-Link

In case of a malfunction, the corresponding error signals are also sent directly to the PLC in acyclic mode. This is in addition to transmission of the switching signals and status signals.

Possible error signals:

- Switching element defective
- No main voltage (motor starter protector tripped)
- No control supply voltage
- Limit position on the right/on the left
- Manual mode
- Process image fault

Switching devices - Contactors and contactor assemblies - for switching motors

 Power contactors for switching motors
Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > General data

This easy integration of the starters in the TIA world does not limit the flexibility in the field in the least. For example, all function modules have special terminals in order to enable direct local disconnection. These terminals can be connected for example to a position switch. The input interrupts the voltage supply to the contactor coil directly, i.e. without going through the PLC. These terminals are jumpered in the as-delivered state.

Local manual operation of the complete starter group is also straightforward using a hand-held device. The latter is easily connected to the last starter and can be built into the front panel of the control cabinet if required. This offers significant advantages particularly for commissioning.

SIRIUS function modules with IO-Link are used above all in machines and plants in which there are several motor feeders in one control cabinet. Using IO-Link, the connection of these feeders to the automation level is easy, quick and error-free. And with IO modules no longer needed, the width of the PLC is far smaller.

SIRIUS 3RA2712 function modules for AS-Interface for mounting onto 3RT2 contactors

Topology with AS-Interface

This easy integration of the starters in the TIA world does not limit the flexibility in the field in the least. For example, all function modules have special terminals in order to enable direct local disconnection. These terminals can be connected for example to a position switch. The input interrupts the voltage supply to the contactor coil directly, i.e. without going through the PLC. These terminals are jumpered in the as-delivered state.

SIRIUS function modules with AS-Interface are recommended above all in machines and plants requiring easy connection of several different sensors and actuators both inside and outside the control cabinet to the higher-level control system. And with IO modules no longer needed, the width of the PLC is far smaller.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > General data

Technical specifications

More information

TIA Selection Tool Cloud (TST Cloud), see
FAQs
https://www.siemens.com/tstcloud/?node=Contactor

- For SIRIUS 3RT2 contactors and SIRIUS 3RH2 contactor relays, see

Technical specifications

- For SIRIUS 3RT2 contactors and SIRIUS 3RH2 contactor relays, see https://support.industry.siemens.com/cs/ww/en/ps/16208/ta
- For SIRIUS 3RT1 contactors, see
https://support.industry.siemens.com/cs/ww/en/ps/16209/td
https://support.industry.siemens.com/cs/ww/en/ps/16208/faq
- For SIRIUS 3RT1 contactors, see https://support.industry.siemens.com/cs/ww/en/ps/16209/faq
System Manual for modular system, see
https://support.industry.siemens.com/cs/ww/en/view/60311318
Equipment Manual, see
https://support. industry.siemens.com/cs/ww/en/view/60306557

Solid-state time-delay auxiliary switches
for mounting onto 3RT201 to 3RT204 (sizes S00 to S3) and 3RH2 contactor relays (size S00)

Type		3RA2813	3RA2814	3RA2815
Function		ON-delay	OFF-delay with control signal	OFF-delay without control signal
General data				
Dimensions (basic unit with mounted solid-state time-delay auxiliary switch)		See 3RT2 contactors (pages 3/27, 3/33, 3/38, 3/43) and 3RH2 contactor relays (page 5/7)		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ Pollution degree 3, overvoltage category III V AC		300		
Rated impulse withstand voltage $U_{\text {imp }}$	kV AC	4		
Permissible ambient temperature				
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$		
- During storage	${ }^{\circ} \mathrm{C}$			
Degree of protection IP on the front acc. to IEC 60529		IP20		
Touch protection on the front acc. to IEC 60529		Finger-safe for vertical touching from the front		
Shock resistance Half-sine acc. to IEC 60068-2-27		15/11		
Vibration resistance acc. to IEC 60068-2-6	Hz/mm	10... 55/0.35		
Electromagnetic compatibility (EMC)		IEC 61000-6-2, IEC 61000-6-4, IEC 61812-1, IEC 60947-4-1		
Overvoltage protection		Varistor integrated		
Permissible mounting position		Any (for the mounting position of 3RT2 contactors, see pages 3/27, 3/33, 3/38 $3 / 43$; for the mounting position of 3 RH2 contactor relays, see page $5 / 6$)		
Control				
Operating range of excitation		$0.85 \ldots 1.1 \times U_{\mathrm{s}}$, $0.95 \ldots 1.05$ times the rated frequency		
Rated power- Power consumption at 230 V AC 50 Hz	W	1		
	VA	2		
Recovery time	ms	150		--
Setting accuracy, typ., with reference to upper limit of scale Repeat accuracy, max.		--	35	200
		$\pm 15 \%$		
		$\pm 1 \%$		
Load side				
Rated operational currents $I_{\text {e }}$				
- AC-15 at 24 ... $250 \mathrm{~V}, 50 \mathrm{~Hz}$ - DC-13 - At 24 V - At 125 V - At 250 V	A	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$		
	A			
	A			
	A			
Mechanical endurance	Operating cycles	10×10^{6}		
Electrical endurance at $\mathrm{AC}-15,250 \mathrm{~V}, 3 \mathrm{~A}$	Operating cycles	100000		
Switching frequency for load				
- With I_{e} at 230 V AC - With 3RT2 contactor at 230 V AC	1/h	2500		
	1/h			
Residual current, max.	mA	--		
Voltage drop, max., with conducting output	VA	--		
Short-circuit protection		4		
- Fuse links, operational class gG: DIAZED, type 5SB	A			

Type Function		3RA2813	3RA2814	3RA2815
		ON-delay	OFF-delay with control signal	OFF-delay without control signal
Conductor cross-sections				
Connection type (1 or 2 conductors can be connected)		(1) Screw terminals		
- Solid - Finely stranded with end sleeve (DIN 46228) - AWG cables, solid or stranded - Terminal screws - Tightening torque	mm^{2} mm^{2} AWG Nm	$\begin{aligned} & 1 \times(0.5 \ldots 4), 2 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.5) \\ & 2 \times(20 \ldots 14) \end{aligned}$ M3 (for standard screwdriver size 2 or Pozidriv 2) $0.8 \ldots 1.2$		
Connection type (1 or 2 conductors can be connected)		Spring-loaded terminals		
- Solid - Finely stranded with end sleeve (DIN 46228) - Finely stranded without end sleeve - AWG cables, solid or stranded - Operating devices	mm^{2} mm^{2} mm^{2} AWG mm	$\begin{aligned} & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots .1 .5) \\ & 2 \times(24 \ldots 16) \\ & 3.0 \times 0.5 \end{aligned}$		

Solid-state time-delay auxiliary switches, for snapping onto 3RT1 contactors

Type		3RT1926-2E, 3RT1926-2F, 3RT1926-2G S6 to S12
Sizes		mm

Type		3RT1926-2E, 3RT1926-2F, 3RT1926-2G
		S6 to S12

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > General data

Coupling links for control by PLC

Type Mounting onto contactors of size		$\begin{aligned} & \text { 3RH2924-1GP11 } \\ & \text { S0 } \end{aligned}$	3RH2914-.GP11 S00 to S3
General data			
Standards		IEC 60947	
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	300	
Protective separation between coil and contacts Acc. to IEC 60947-1, Appendix N	VAC	Up to 300	
Degree of protection IP on the front acc. to IEC 60529		IP20	
Touch protection on the front acc. to IEC 60529		Finger-safe for vertical touching from the front	
Permissible ambient temperature			
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$	
- During storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$	
Control side			
Rated control supply voltage $\boldsymbol{U}_{\text {s }}$	V DC	24	
Operating range	\checkmark DC	$17 . .30$	
Power consumption at U_{s}	W	0.5	
Nominal current input	mA	20	
Release voltage	V	≥ 4	
Function display		Yellow LED	
Protection circuit		Varistors	
Load side			
Mechanical endurance	Operating cycles	20 million	10 million
Electrical endurance at I_{e}	Operating cycles	0.1 million	
Switching frequency	1/h	5000	
Make-time	ms	Approx. 7	
Break-time	ms	Approx. 4	
Bounce time	ms	Approx. 2	
Contact material		AgSnO_{2}	
Switching voltage	V AC/DC	$24 \ldots 250$	
Rated operational current I_{e}			
- AC-15/AC-14 at 230 V	A	3	
- DC-13 at 230 V	A	0.1	
Permissible residual current of the electronics (with 0 signal)	mA	2.5	
Conductor cross-sections			
Connection type (1 or 2 conductors can be connected)		(®) Screw terminals	
- Solid	mm^{2}	$2 \times(0.5 \ldots 2.5)$	
- Finely stranded with end sleeve (DIN 46228)	mm^{2}	$2 \times(0.5 \ldots 1.5)$	
- Terminal screws		M3	
Connection type (1 or 2 conductors can be connected)		Spring-loaded terminals	
- Solid	mm^{2}	--	$2 \times(0.25 \ldots 1.5)$
- Finely stranded with end sleeve (DIN 46228)	mm^{2}	--	$2 \times(0.25 \ldots 1.5)$
- Finely stranded without end sleeve	mm^{2}	--	$2 \times(0.25 \ldots 1.5)$
- AWG cables, solid or stranded	AWG	--	$2 \times(24 \ldots 16)$
- Operating devices	mm	--	3.0×0.5

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > General data

 3RA28 function modules for mounting onto 3RT2 contactors and 3RH2 contactor relays

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > General data

3RA27 function modules for IO-Link for mounting onto 3RT2 contactors

Type		3RA2711
General data		
Dimensions		See 3RT2 contactors: pages 3/27, 3/33, 3/38 and 3/43
Suitable for IO-Link masters acc. to specification		1.1
Permissible ambient temperature - During operation - During storage - During transport	Acc. to IEC 60947-1 ${ }^{\circ} \mathrm{C}$ Acc. to IEC 60721-3-1 ${ }^{\circ} \mathrm{C}$ Acc. to IEC 60721-3-2 ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+80 \\ & -40 \ldots+80 \end{aligned}$
Degree of protection IP on the front acc. to IEC 60529		IP20
Touch protection on the front acc. to IEC 60529		Finger-safe for vertical touching from the front
Operating voltage U_{Hi}	V DC	$24 \pm 20 \%$
Max. length of the cables for the input Y1-Y2	m	30
Electromagnetic compatibility (EMC)		IEC 61000-6-2, IEC 61000-6-4, IEC 60947-4-1
Conductor cross-sections		
Connection type (1 or 2 conductors can be connected)		Screw terminals
- Solid - Finely stranded with end sleeve (DIN 46228) - AWG cables, solid or stranded - Terminal screws - Tightening torque of the terminal screws	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \\ & \mathrm{Nm} \end{aligned}$	$\begin{aligned} & 1 \times(0.5 \ldots 4), 2 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.5) \\ & 2 \times(20 \ldots 14) \\ & \text { M3 (for standard screwdriver } \varnothing 6 \mathrm{~mm} \text { or Pozidriv } 2) \\ & 0.8 \ldots 1.2 \end{aligned}$
Connection type (1 or 2 conductors can be connected)		○O Spring-loaded terminals
- Operating devices - Solid - Finely stranded with end sleeve (DIN 46228) - Finely stranded without end sleeve - AWG cables, solid or stranded	mm mm^{2} mm^{2} mm^{2} AWG	$\begin{aligned} & 3.0 \times 0.5 \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(24 \ldots 16) \end{aligned}$

3RA27 function modules for AS-Interface for mounting onto 3RT2 contactors

Type		3RA2712
General data		
Dimensions		See 3RT2 contactors: pages 3/27, 3/33, 3/38 and 3/43
Slave type		A/B slave
Suitable for AS-i masters acc. to specification		2.1 or higher
AS-i slave profile IO.ID.ID2		7.A.E
ID1 code (factory setting)		7
Permissible ambient temperature		
- During operation - During storage - During transport	Acc. to IEC 60947-1 Acc. to IEC 60721-3-1 ${ }^{\circ} \mathrm{C}$ Acc. to IEC 60721-3-2 ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+80 \\ & -40 \ldots+80 \\ & \hline \end{aligned}$
Degree of protection IP on the front acc. to IEC 60529		IP20
Touch protection on the front acc. to IEC 60529		Finger-safe for vertical touching from the front
Operational voltage		
- AS-Interface - AUX PWR 24 V DC	$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & 26.5 \ldots 31.6 \\ & 24 \pm 20 \% \end{aligned}$
Current consumption, max.		
- AS-Interface - AUX PWR - Maximum pickup/hold current	mA Size S00 mA Size S0 mA Size S2 mA Size S3 mA	$\begin{aligned} & 30 \\ & 200 / 200 \\ & 300 / 300 \\ & 1300 / 50 \\ & 4000 / 70 \end{aligned}$
Max. length of the cables for the input Y1-Y2	m	30
Electromagnetic compatibility (EMC)		IEC 61000-6-2, IEC 61000-6-4, IEC 60947-4-1
Conductor cross-sections		
Connection type (1 or 2 conductors can be connected)		Screw terminals
- Solid - Finely stranded with end sleeve (DIN 46228) - AWG cables, solid or stranded - Terminal screws - Tightening torque of the terminal screws	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \\ & \mathrm{Nm} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \times(0.5 \ldots 4), 2 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.5) \\ & 2 \times(20 \ldots 14) \\ & \text { M3 (for standard screwdriver } \varnothing 6 \mathrm{~mm} \text { or Pozidriv } 2) \\ & 0.8 \ldots 1.2 \end{aligned}$
Connection type (1 or 2 conductors can be connected)		Spring-loaded terminals
- Operating devices - Solid - Finely stranded with end sleeve (DIN 46228) - Finely stranded without end sleeve - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 3.0 \times 0.5 \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(24 \ldots 16) \end{aligned}$

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous

Overview

Auxiliary switch: Terminal designations and identification numbers for auxiliary contacts

Terminal designations

The terminal designations are 2-digit, e.g. 13, 14, 21, 22 :

- Tens digit: Sequence digit
- Related terminals have the same sequence digit
- Units digit: Function digit
- 1-2 for normally closed contacts (NC)
-3-4 for normally open contacts (NO)

Identification numbers
The identification number indicates the number and type of the auxiliary contacts, e.g. 40, 31, 22, 13:

- 1st digit: number of normally open contacts (NO)
- 2nd digit: number of normally closed contacts (NC)

Examples:

- $31=3 \mathrm{NO}+1 \mathrm{NC}$
- $40=4 \mathrm{NO}$

Selection aid for mountable auxiliary switches for power contactors and contactor relays

The auxiliary switches of the 3RH29 series for mounting onto the front and side can be used for 3RT2 power contactors as well as for 3RH2 contactor relays.
The possible combinations of basic unit and mounted auxiliary switch can be found in the tables, see the following pages

Where the columns and lines intersect (blue and green in the example) you will find the identification number for the combination of basic unit (column) and auxiliary switch (line).

	Example 1	Example 2
Type	3RT20 motor contactor, S00 with 1 NO	3RT20 motor contactor, S00 with 1 NO + 1 NC
Sequence digit	2. 3. 4. 5 .	3. 4. 5. 6 .
Type	Auxiliary switch with 4 NC, H2911-.FA04	Auxiliary switch with 3 NC, 3RH2911-HA03
Combination	3RT20 motor contactor, S00 with aux. switch	3RT20 motor contactor, SO with aux. switch
Terminal designation Result	$\begin{array}{rrrrr} 13 & 21 & 31 & 41 & 51 \\ \text { on } & 22 & 32 & 42 & 52 \end{array}$	$\begin{array}{llllll} 13 & 21 & 31 & 41 & 51 & \\ 14 & 22 & 32 & 42 & 52 & \underline{8} \\ \hline \end{array}$
	Ident. No. 14	Ident. No. 14

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous

[^13]Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous

Complete inscription with terminals from top or bottom

[^14]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous

[^15]Switching devices - Contactors and contactor assemblies - for switching motors
Power contactors for switching motors
Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous

[^16]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous

[^17]Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous
Selection and ordering data

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS	$=41 B$

					RH			3RH2911	
For contactors/ contactor relays ${ }^{1)}$	Auxiliary contacts Version			SD	Screw terminals	(1)	SD	Spring-loaded terminals	
		$\begin{gathered} 4 \\ \mathrm{NO} \end{gathered}$			Article No.	Price per PU	d	Article No.	$\begin{array}{r} \text { Price } \\ \text { per PU } \end{array}$
Auxiliary switches for snapping onto the front									
Sizes S00 to S3									
$\begin{aligned} & \text { 3RT2.1, } \\ & \text { 3RT2.2, } \\ & \text { 3RT2.3, } \\ & \text { 3RT2.4 } \end{aligned}$	--	1	$-\left.\right\|_{-1} ^{-1}$	-	3RH2911-1HA01		-	3RH2911-2HA01	
$\begin{aligned} & \text { 3RH21, } \\ & \text { 3RH24 } \end{aligned}$	--	2		-	3RH2911-1HA02		-	3RH2911-2HA02	
	--	3		-	3RH2911-1HA03		2	3RH2911-2HA03	
	1	--	$-\left.\right\|_{.4} ^{i^{3}}$	-	3RH2911-1HA10		-	3RH2911-2HA10	
	1	1	$\left.\right\|_{-1} ^{1}+\left.\right\|_{2} ^{-3}$	-	3RH2911-1HA11		-	3RH2911-2HA11	
	1	2		-	3RH2911-1HA12		-	3RH2911-2HA12	
	1	3		\checkmark	3RH2911-1HA13		\checkmark	3RH2911-2HA13	
	2	--	$\left.\left.\right\|_{.4} ^{\left.\right\|^{3}}\right\|_{.4} ^{-3}$	-	3RH2911-1HA20		-	3RH2911-2HA20	
	2	1		-	3RH2911-1HA21		-	3RH2911-2HA21	
	2	2		-	3RH2911-1HA22		-	3RH2911-2HA22	
	3	--	$\left.\left.\left.\right\|_{.4} ^{i^{3}}\right\|_{-4} ^{-3}\right\|_{.4} ^{-3}$	\checkmark	3RH2911-1HA30		\checkmark	3RH2911-2HA30	
	3	1		-	3RH2911-1HA31		-	3RH2911-2HA31	

[^18]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous
PU (UNIT, SET, M) =
PS* $\quad=1$ unit

For contactors/ contactor relays ${ }^{1)}$	Connections Position	Auxiliary contacts Version	SD	Screw terminals	(1)	SD	Spring-loaded terminals O		
		$1\} \quad 1 \quad 1$		Article No.	Price per PU		Article No.		$\begin{aligned} & \text { Price } \\ & \text { r PU } \end{aligned}$
Type		NO NC NO NC	d			d			

Auxiliary switches for snapping onto the front

Sizes SOO to S3

3RT2.1, 3RT2.2, 3RT2.3, 3RT2.4	--	4	--	--		$\left.\left.\left.\left.\right\|_{.4} ^{.3}\right\|_{.4} ^{-3}\right\|_{.4} ^{-3}\right\|_{.4} ^{-3}-\left.\right\|^{-3}$	-	3RH2911-1FA40	-	3RH2911-2FA40
$\begin{aligned} & \text { 3RH21, } \\ & \text { 3RH24 } \end{aligned}$	--	2	2	--	--		-	3RH2911-1FA22	-	3RH2911-2FA22
	--	--	4	--	--		-	3RH2911-1FA04	-	3RH2911-2FA04
	--	--	--	1	1	$\left.\left.\right\|_{.8} ^{.7}\right\|_{.6} ^{.5}$	-	3RH2911-1FB11	-	3RH2911-2FB11
	--	1	1	1	1		-	3RH2911-1FB22	-	3RH2911-2FB22
	--	--	--	2	2		-	3RH2911-1FC22	-	3RH2911-2FC22
1- and 2-pole auxiliary switches, cable entry from top or bottom										
3RT2.1, 3RT2.2, 3RT2.3, 3RT2.4	Top	1	--	--	--	173	-	3RH2911-1AA10		--
	Bottom	1	--			$-\left.\right\|_{74} ^{-}$	-	3RH2911-1BA10		--
$\begin{aligned} & \text { 3RH21, } \\ & \text { 3RH24 } \end{aligned}$	Top	--	1	--	--	171	-	3RH2911-1AA01		--
	Bottom				--	I_{72}	-	3RH2911-1BA01		--
	Top	1	1	--	--	$173 \mid 81$	-	3RH2911-1LA11		--
	Bottom	1	1	--		$\left.\right\|_{74} ^{1-\left.\right\|_{82}}$	-	3RH2911-1MA11		--
	Top	2	--	--	--	$\left.{ }^{73}\right\|^{83}$	-	3RH2911-1LA20		--
	Bottom	2	--	--		$\left\|\left.\right\|_{74} ^{1}-\frac{1}{84}\right.$	-	3RH2911-1MA20		--

[^19]Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous

$\mathrm{PU}($ UNIT, SET, M)	$=1$
PS^{\star}	$=1$ unit
PG	$=41 \mathrm{~B}$

Size 500

1) For detailed information on use, see page $3 / 92$.

$\mathrm{PU}(\mathrm{UNIT}, \mathrm{SET}, \mathrm{M})$	$=1$
PS	
PG	$=1$ unit
	$=41 \mathrm{~B}$

				3RH2911-1XA22-0MA0			3RH2911-2XA22-0MA0		
For contactors/ contactor relays ${ }^{1)}$	Aux con Vers			SD	Screw terminals	(1)	SD	Spring-loaded terminals	00
Type		$\prod_{N C}^{4}$		d	Article No.	Price per PU	d	Article No.	Price per PU
Auxiliary switches for snapping onto the front									
Sizes S00 to S3									
$\begin{aligned} & \text { 3RT2.1, } \\ & \text { 3RT2.2, } \\ & \text { 3RT2.3, } \\ & \text { 3RT2.4 } \end{aligned}$	4	--	$\left.\left.\left.\left.\left.\right\|_{54} ^{53}\right\|_{64} ^{53}\right\|_{74} ^{63}\right\|_{84} ^{73}\right\|_{83} ^{83}$	-	3RH2911-1XA40-0MAO		-	3RH2911-2XA40-0MAO	
$\begin{aligned} & \text { 3RH21, } \\ & \text { 3RH24 } \end{aligned}$	3	1	$\left.\left.\left.\left.\left.\right\|^{53}\right\|_{54} ^{61}\right\|_{62} ^{61}\right\|_{74} ^{73}\right\|_{84} ^{83}$	-	3RH2911-1XA31-0MAO		-	3RH2911-2XA31-0MAO	
	2	2		-	3RH2911-1XA22-0MAO		-	3RH2911-2XA22-0MAO	
	--	4		-	3RH2911-1XA04-0MAO		-	3RH2911-2XA04-0MAO	

[^20]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous

PU (UNIT, SET, M)	$=1$
PS*	$=1$ unit
PG	$=41 \mathrm{~B}$

3RH1921-1XA22-0MAO
3RH1921-2XA22-0MAO

For	Auxiliary contacts	SD
contactors	Ident. No. Version	

Type NO NC NO NC
d

Auxiliary switches for snapping onto the front
Sizes S6 to S12

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous

$\mathrm{PU}(\mathrm{UNIT}, \mathrm{SET}, \mathrm{M})$	$=1$
PS	$=1 \mathrm{unit}$
PG	$=41 \mathrm{~B}$

3RH2911-1DA02

For contactors ${ }^{1)}$	Auxiliary contacts Version				SD	Screw terminals		SD	Spring-loaded terminals	00
Type		$\begin{aligned} & 4 \\ & \mathrm{NO} \end{aligned}$			d	Article No.	Price per PU	d	Article No.	Price per PU
Laterally mountable auxiliary switches, mounting onto the right and/or the left, 2-pole										
Size S00 3RT2.1			Left	Right						
	--	2		$\begin{array}{c\|c} 21 \\ - & \begin{array}{c} 31 \\ 21 \\ 22 \end{array} \\ 3 \end{array}$	-	3RH2911-1DA02		2	3RH2911-2DA02	
	1	1	$\left.\underbrace{41}_{42} \underbrace{41}_{54}\right\|_{53} ^{53}$	$\left(\left.\begin{array}{l\|l} 21 \\ \dot{E} \\ 22 \end{array}\right\|_{34} ^{33}\right.$	-	3RH2911-1DA11		-	3RH2911-2DA11	
	2	--	$\left\|\left.\right\|_{44} ^{43}\right\|_{54}^{53}$	$\left\|\left.\right\|_{24} ^{23}\right\|_{34}^{33}$	-	3RH2911-1DA20		-	3RH2911-2DA20	
Sizes S0 to S3			Left	Right						
$\begin{aligned} & \text { 3RT2.1 } \\ & \text { 3RT2.2 } \\ & \text { 3RT2.3), } \\ & \text { 3RT2.43)' } \end{aligned}$	--	2		$\left.\begin{array}{l\|l} 31 \\ - \\ 31 \\ 32 \end{array}\right\|_{42} ^{41}$	-	3RH2921-1DA02		-	3RH2921-2DA02	
	1	1	$\begin{aligned} & 51 \\ & \vdots \\ & \vdots \\ & 52 \end{aligned} \underbrace{}_{66} \underbrace{63}_{63}$	$\left(\begin{array}{l} 31 \\ \vdots \\ \vdots \\ 32 \end{array}\right\}_{44}$	-	3RH2921-1DA11		-	3RH2921-2DA11	
	2	--	$\left\|\left.\right\|_{54} ^{53}\right\|_{64}^{63}$	$\left\|\begin{array}{l} 33 \\ -\lambda \\ 34 \end{array}\right\|_{44}^{43}$	-	3RH2921-1DA20		-	3RH2921-2DA20	

[^21]2) With 3RT232. and 3RT252. contactors, mountable only onto the right.
3) 3RH2921-1DA.. lateral auxiliary switches can only be mounted onto 3RT26 capacitor contactors of sizes S2 and S3.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS*	$=41 \mathrm{~B}$

3RH1921-1DA11

3RH1921-1JA11

3RH1921-1EA02

3RH1921-1KA02

3RH1921-2DA11

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, instantaneous

Solid-state compatible auxiliary switches, 2-pole

- For operation in dusty atmospheres
- For solid-state circuits with rated operational currents
$I_{\mathrm{e}} / \mathrm{AC}-14$ and DC-13 from 1 to 300 mA at 3 to 60 V
- Hard gold-plated contacts
- Laterally mountable auxiliary switches and auxiliary switches for snapping onto the front for 3RT2 contactors, sizes S0 to S3, are designed as mirror contacts according to IEC 60947-4-1 Appendix F

Auxiliary switches for snapping onto the front

Lateral auxiliary switches, mounting onto the right and/or the left, acc. to EN 50012

[^22]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, delayed
Selection and ordering data

${ }^{1)}$ In addition to these, no other auxiliary contacts are permitted.
Technical specifications, see Equipment Manual.
${ }^{2)}$ Cannot be fitted onto coupling contactors and coupling contactor relays.

$\mathrm{PU}($ UNIT, SET, M)	$=1$
PS*	$=1$ unit
PG	$=41 \mathrm{~B}$

For contactors	Rated control supply voltage $U_{s}^{1)}$	Time setting range t	Output/ auxiliary contacts	SD	Screw terminals	(1)	SD	Spring-lo	als 00
Type	V	s		d	Article No.	Price per PU		Article No.	Price per PU

Solid-state time-delay auxiliary switches ${ }^{2}$)
for mounting onto 3RT2 contactors and 3RH2 contactor relays

Sizes S00 to S3

The electrical connection between the solid-state time-delay auxiliary switch and the contactor or contactor relay underneath is established automatically when it is snapped on and locked.

$\begin{aligned} & 3 R T 2^{3) 4)} \\ & 3 R \mathrm{RH} 21^{3)^{\prime}} \\ & 3 \mathrm{RH} 24 \end{aligned}$	ON-delay (varistor integrated)						
	24 ... 240 AC/DC	0.05 ... 100	1 CO	2	3RA2813-1AW10	2	3RA2813-2AW10
		$\begin{aligned} & \text { (1, 10, 100; } \\ & \text { selectable) } \end{aligned}$	$1 \mathrm{NO}+1 \mathrm{NC}$	2	3RA2813-1FW10	2	3RA2813-2FW10
	OFF-delay with control signal (varistor integrated)						
$\begin{aligned} & \text { 3RT23)4) } \\ & \text { 3RH213)', } \\ & 3 \mathrm{RH} 24 \end{aligned}$	$24 . .240$ AC/DC	$\begin{aligned} & 0.05 \ldots .100 \\ & \text { (1, 10, 100; } \\ & \text { selectable) } \end{aligned}$	1 CO	2	3RA2814-1AW10	2	3RA2814-2AW10
			$1 \mathrm{NO}+1 \mathrm{NC}$	2	3RA2814-1FW10	2	3RA2814-2FW10
	OFF-delay without control signal ${ }^{5}$) (varistor integrated)						
$3 R T 2^{3 / 4)}$	$24 . .240$ AC/DC	0.05 ... 100	1 CO	2	3RA2815-1AW10	2	3RA2815-2AW10
$\begin{aligned} & 3 \mathrm{RH} 21^{3} \text {, } \\ & 3 \mathrm{RH} 24 \end{aligned}$		$\begin{aligned} & \text { (1, 10, 100; } \\ & \text { selectable) } \end{aligned}$	$1 \mathrm{NO}+1 \mathrm{NC}$	2	3RA2815-1FW10	2	3RA2815-2FW10

1) $A C$ voltage values apply for 50 Hz and 60 Hz .
2) The solid-state time-delay auxiliary switches are also available as 3RA28 function modules for mounting onto 3RT2 contactors and 3 RH2 contactor relays, see page $3 / 107$.
3) Cannot be fitted onto coupling contactors and coupling contactor relays.
4) From product version E04 onwards, 3RA281. solid-state time-delay auxiliary switches can be used for 3RT2.4 contactors.
${ }^{5)}$ Setting of output contacts in as-supplied state not defined (bistable relay). Application of the control supply voltage once results in contact changeover to the correct setting

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Auxiliary switches, delayed

For contactors	Auxiliary contacts	Rated control supply voltage $U_{s}{ }^{1}$)	Time setting range t	SD	Screw terminals	\because	PU (UNIT, SET, M)	PS*	PG
Type		V	S	d	Article No.	Price per PU			

Solid-state time-delay auxiliary switches
for mounting onto 3RT1 contactors

Sizes S6 to S12

3RT1926-2E.. 1 ,
3RT1926-2F. 1

	ON-delay ${ }^{2}$		
$\begin{aligned} & \text { 3RT10, } \\ & \text { 3RT14 } \end{aligned}$	$1 \mathrm{NO}+1 \mathrm{NC}$	24 AC/DC	$\begin{aligned} & 0.05 \ldots 1 \\ & 0.5 \ldots 10 \\ & 5 \ldots .100 \end{aligned}$
		$100 \ldots 127$ AC	$\begin{aligned} & 0.05 \ldots 1 \\ & 0.5 \ldots 10 \\ & 5 \ldots 100 \end{aligned}$
		200.. 240 AC	$\begin{aligned} & 0.05 \ldots 1 \\ & 0.5 \ldots 10 \\ & 5 \ldots 100 \\ & \hline \end{aligned}$
OFF-delay without control signal ${ }^{\text {2)3) }}$			

Switching devices - Contactors and contactor assemblies - for switching motors
 Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Surge suppressors
Selection and ordering data

For con- Version tactors	Rated control supply voltage $U_{s}{ }^{1)}$		SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
	AC operation	DC op						
Type	V AC	V DC	d					

Surge suppressors without LED (also for spring-loaded terminals)
Size SOO

3		For plugging onto (with or without au	front of the iary switches)	tactors					
	3RT2.1,	Varistors	$24 \ldots 48$	$24 \ldots 70$	-	3RT2916-1BB00	1	1 unit	41B
	3 RH 2		$48 . . .127$	70 ... 150	-	3RT2916-1BC00	1	1 unit	41B
			127 ... 240	$150 \ldots 250$	-	3RT2916-1BD00	1	1 unit	41B
			240 ... 400	--	-	3RT2916-1BE00	1	1 unit	41B
			$400 \ldots 600$	--	2	3RT2916-1BF00	1	1 unit	41B
	3RT2.1,	RC elements	$24 \ldots 48$	$24 . . .70$	-	3RT2916-1CB00	1	1 unit	41B
3RT2916-1B.00	3RH2		$48 . . .127$	70 ... 150	-	3RT2916-1CC00	1	1 unit	41B
			127 ... 240	$150 \ldots 250$	-	3RT2916-1CD00	1	1 unit	41B
			240 ... 400	--	-	3RT2916-1CE00	1	1 unit	41B
			$400 \ldots 600$	--	2	3RT2916-1CF00	1	1 unit	41B
	$\begin{aligned} & \text { 3RT2.1, } \\ & \text { 3RH2 } \end{aligned}$	Suppression diodes	--	$12 . . .250$	-	3RT2916-1DG00	1	1 unit	41B
	$\begin{aligned} & \text { 3RT2.1, } \\ & \text { 3RH2 } \end{aligned}$	Diode assemblies (diode and Zener diode) for DC operation	--	$12 . .250$	-	3RT2916-1EH00	1	1 unit	41B
	Size SO								
		For plugging into (before mounting	front of the auxiliary s	actors					
\square	3RT2.2	Varistors ${ }^{2}$)	$24 \ldots 48$	$24 \ldots 70$	-	3RT2926-1BB00	1	1 unit	41B
			$48 . . .127$	70 ... 150	-	3RT2926-1BC00	1	1 unit	41B
			$127 . . .240$	150 ... 250	-	3RT2926-1BD00	1	1 unit	41B
			240 ... 400	--	-	3RT2926-1BE00	1	1 unit	41B
			$400 \ldots 600$	--	2	3RT2926-1BF00	1	1 unit	41B
	3RT2.2	RC elements	$24 \ldots 48$	24 ... 70	-	3RT2926-1CB00	1	1 unit	41B
3RT2926-1E.00			48 ... 127	70 ... 150	-	3RT2926-1CC00	1	1 unit	41B
			127... 240	150 ... 250	-	3RT2926-1CD00	1	1 unit	41B
			240 ... 400	--	-	3RT2926-1CE00	1	1 unit	41B
			$400 \ldots 600$	--	2	3RT2926-1CF00	1	1 unit	41B
	3RT2.2	Diode assemblies	--	24	-	3RT2926-1ER00	1	1 unit	41B
		for DC operation	--	$30 . . .250$	-	3RT2926-1ES00	1	1 unit	41B

Sizes S2 and S3

For plugging into the front of the contactors (before mounting the auxiliary switch)

RT2936-1BF00

3RT2936-1BB00	1	1 unit	41 B
3RT2936-1BC00	1	1 unit	41 B
3RT2936-1BD00	1	1 unit	41 B
3RT2936-1BE00	1	1 unit	41 B
3RT2936-1BF00	1	1 unit	41 B
3RT2936-1CB00	1	1 unit	41 B
3RT2936-1CC00	1	1 unit	41 B
3RT2936-1CD00	1	1 unit	41 B
3RT2936-1CE00	1	1 unit	41 B
3RT2936-1CF00	1	1 unit	41 B
3RT2936-1ER00	1	1 unit	41 B
3RT2936-1ES00	1	1 unit	41 B

Size S3

For plugging into the two recesses on the left next to the connection block for auxiliary switches and coils A1 and A2. The connecting cables are wired to A1 and A2, see also page $3 / 11$.
3RT2.4 RC elements

$24 \ldots 48$	$24 \ldots 70$
$48 . . .127$	70 ... 150
127 ... 240	150 ... 250
240 ... 400	--
400 ... 600	--

2	3RT2946-1CB00
2	3RT2946-1CC00
3	3RT2946-1CD00
5	3RT2946-1CE00
5	3RT2946-1CE0

3RT2946-1C. 00

1) Can be used for AC operation for $50 / 60 \mathrm{~Hz}$. Other voltages on request.
${ }^{2)}$ The varistor is already integrated on the $A C / D C$ contactors.

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Surge suppressors

3RT1956-1C. 02
surge suppressors with LED (also for spring-loaded terminals)

3RT2916-1J.00

3RT2926-1MR00

Sizes S2 and S3

3RT2 3
$\begin{array}{llllllll} & 24 \ldots & 48 & 12 & \ldots & 24 & 10 & \ldots \\ \text { 3RT2.3, } & & 120 & \\ \text { 3RT2.4 } & 48 \ldots & 127 & 24 \ldots & 70 & 20 \ldots & 470 & 2\end{array}$

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Modules for contactor control
Selection and ordering data

For contactors	Version	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
Type		d					
control by PLC							
			Screw terminals	(1)			
Size SO							
	For mounting onto the coil terminals of the contactors (for contactors with screw terminals only) With LED for the switching state and with integrated varistor for damping opening surges						
3RT2.2	- 24 V DC control, 17 ... 30 V DC operating range	-	3RH2924-1GP11		1	1 unit	41B

3RH2924-1GP11
Sizes S00 to S3

For mounting onto the front of contactors
with AC, DC or AC/DC operation

$$
\begin{array}{ll}
\text { 3RT2.1, } & 24 \mathrm{~V} \text { DC control, }
\end{array}
$$

3RT2.2,
3RT2.3, 3RT2.4 3RH2

3RH2914-2GP11
Technical specifications, see page $3 / 86$.

Switching devices - Contactors and contactor assemblies - for switching motors

 Power contactors for switching motorsAccessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Modules for contactor control

$\mathrm{PU}(\mathrm{UNIT}, \mathrm{SET}, \mathrm{M})$	$=1$
PS	$=1 \mathrm{unit}$
PG	$=41 \mathrm{~B}$

3RA2811-2CW10

3RA2812-1DW10

More information
Equipment Manual for 3RA28 function modules, see
https://support.industry.siemens.com/cs/ww/en/view/60279150

3RA2816-0EW20

For contactors	Size	Version	Rated control supply voltage $U_{s}{ }^{1)}$	Time setting range t	SD	Screw term	\bigoplus	SD	Spring-lo	s 00
Type			V AC/DC	s	d	Article No.	Price per PU	d	Article No.	Price per PU

3RA28 function modules for mounting onto 3RT2 contactors and
3RH2 contactor relays
For direct-on-line starting

$\begin{aligned} & \text { 3RT2.12) } \\ & \text { 3RT2.2 } \left.{ }^{2}\right)^{\prime} \\ & \text { 3RH212), } \\ & \text { 3RH24 } \end{aligned}$	S00, So	ON-delay 2-wire design, varistor integrated The electrical connection	$24 \ldots 240$	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100 ; \\ & \text { selectable } \end{aligned}$		3RA2811-1CW10	2	3RA2811-2CW10
$\begin{aligned} & \hline \text { 3RT2.3 }{ }^{2)} \\ & \text { 3RT2.4 } 4^{2)} \end{aligned}$	S2, S3	between the function module and the contactor underneath is established automatically when it is snapped on and locked.	$\begin{aligned} & \hline 24 \ldots 90 \\ & 90 \ldots 240 \end{aligned}$	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100 ; \\ & \text { selectable) } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RA2831-1DG10 } \\ & \text { 3RA2831-1DH10 } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	3RA2831-2DG10 3RA2831-2DH10
$\begin{aligned} & \text { 3RT2.12) } \\ & \text { 3RT2.2 }{ }^{21} \text { ', } \\ & \text { 3RH212), } \\ & \text { 3RH24 } \end{aligned}$	S00, SO	OFF-delay with control signal, varistor integrated The electrical connection	$24 \ldots 240$	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100 ; \\ & \text { selectable) } \end{aligned}$	2	3RA2812-1DW10	2	3RA2812-2DW10
$\begin{aligned} & \hline \text { 3RT2.32) } \\ & \text { 3RT2.4²)3) } \end{aligned}$	S2, S3	between the function module and the contactor underneath is established automatically when it is snapped on and locked.	$\begin{aligned} & \hline 24 \ldots 90 \\ & 90 \ldots 240 \end{aligned}$	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100 ; \\ & \text { selectable) } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	3RA2832-1DG10 3RA2832-1DH10	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	3RA2832-2DG10 3RA2832-2DH10
For star-delta (wye-delta) starting								
3RT2.1, 3RT2.2, 3RT2.32) 3RT2.4 ${ }^{2(4)}$	S00 ... S3	Varistor integrated Comprising one basic module and two coupling modules The electrical connection between the function module and the contactor assembly is established automatically by snapping on and plugging in the connecting cables.	$24 \ldots 240$	$\begin{aligned} & 0.5 \ldots 60 \\ & \text { (10, 30, 60; } \\ & \text { selectable) } \end{aligned}$	2	3RA2816-0EW20	2	3RA2816-0EW20
Accessories								
3RA28	S00 ... S3	Cover, sealable			2	3RA2910-0	2	3RA2910-0

${ }^{\text {1) }} \mathrm{AC}$ voltage values apply for 50 Hz and 60 Hz .
${ }^{2)}$ Cannot be fitted onto coupling contactors and coupling contactor relays
${ }^{3)}$ From product version E03 onwards, 3RA283. function modules can be used for 3RT2.4 contactors.
4) From product version E04 onwards, 3RA2816 function modules can be used for 3RT2.4 contactors

Technical specifications, see page 3/87.

Assembly of reversing starters

We offer ready-made wiring kits for the assembly of reversing starters. Use of these wiring kits offers further advantages, see page 3/153.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Modules for contactor control

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS	$=418$

More information
Equipment Manual for 3RA2711 function modules for IO-Link, see https://support.industry.siemens.com/cs/ww/en/view/39319600
Equipment Manual for 3RA2712 function modules for AS-Interface, see https://support. industry.siemens.com/cs/ww/en/view/39318922

SIRIUS 3RA27 function modules for star-delta (wye-delta) starting ${ }^{4)}$

3RT201 3RT2041)	S00 \ldots S3	IO-Link connection Comprising one basic and two coupling modules and an additional module connector ${ }^{3)}$ for creating an IO-Link group	2	3RA2711-1CA00	2	3RA2711-2CA00
		AS-Interface connection Comprising one basic and two coupling modules	2	3RA2712-1CA00	2	3RA2712-2CA00
		Assembly kits for making 3-pole contactor assemblies See page 3/112				

1) From product version E06 onwards, 3RA271. function modules can be used for 3RT2.4 contactors
${ }^{2)}$ For prewired reversing contactor assemblies with voltage tap-off, see pages $3 / 154$ to $3 / 157$. When these contactor assemblies are used, the assembly kit for the wiring is already integrated
2) 3RA2711-0EE17 module connectors for size S3 must be ordered separately, see page 3/109.
3) For complete contactor assemblies for star-delta (wye-delta) starting including function modules, see pages 3/171 to 3/174.

Technical specifications for 3RA27 function modules, see page 3/88.

For contactors with voltage tap-off, see pages 3/61, 3/65, 3/69 and $3 / 71$.

For IO-Link masters and AS-Interface masters, routers and power supply units, see "Industrial Communication", page 2/1 onwards.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Modules for contactor control

Selection and ordering data

PU (UNIT, SET,
PS*
PG
Assembly kits
for making 3-p
LThe
3RA2923-2AA

3RA2933-2AA1

3RA2943-2AA1

3RA2943-2AA2
of of ab

PR

3RA1953-2A

-1. 2.0 क्या

3RA1963-2A

1) Use of the 3RA2923-2AA1 assembly kit in conjunction with the 3RT202.-.....-3MAO contactors is limited because the auxiliary of the permanently mounted auxiliary switch.
2) Version in size SO with spring-loaded terminals

Only the wiring modules for the main circuit are included.
connecting clips are included the auxiliary and A cable set is included for the auxiliary circuit.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Link modules

$\mathrm{PU}(\mathrm{UNIT}, \mathrm{SET}, \mathrm{M})$	$=1$
	$=1$ unit (unless otherwise specified)
PG	$=41 \mathrm{~B}$

1) When using the function modules for contactor assemblies for star-delta (wye-delta) starting, the wiring modules for the auxiliary current are not required.
2) The 3RA2934-2B mechanical interlock for sizes $S 2$ and $S 3$ must be ordered separately, see page 3/115.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Link modules

	For contactors	Size	Version	SD	Article No.	Price per PU		PS*	PG
	Type			d					
Assembly kits for con starting for making 3-	actor asse ole contac	blies for sta assemblie	Ir-delta (wye-delta) S						
			The assembly kit contains: link rails at bottom (a double infeed between the line contactor and the delta contactor is recommended.)						
3RA1953-3G	$\begin{aligned} & \text { 3RT1.5, } \\ & \text { 3RT204 } \end{aligned}$	S6-S6-S3 For connection with box terminal	The S3 star jumper must be ordered separately, see page 3/114.	5	3RA1953-3G		1	1 unit	41B
	3RT1.5	S6-S6-S6 For connection with box terminal	--	5	3RA1953-2B		1	1 unit	41B
3RA1953-2B									
	3RT1.5	S6-S6-S6 For connection without box terminal	--	5	3RA1953-2N		1	1 unit	41B
$\begin{aligned} & 5 \pi+1150 \text { का } 0 \\ & \text { 3RA1953-2N } \end{aligned}$									
3RA1963-3E	$\begin{aligned} & \text { 3RT1.6, } \\ & \text { 3RT1.5 } \end{aligned}$	S10-S10-S6 For connection with box terminal	The S6 star jumper must be ordered separately, see page 3/114.	20	3RA1963-3E		1	1 unit	41B
	3RT1.6	S10-S10-S10 For connection without box terminal	--	15	3RA1963-2B		1	1 unit	41B
3RA1963-2B									
3RA1973-3E	$\begin{aligned} & \text { 3RT1.7, } \\ & \text { 3RT1.6 } \end{aligned}$	S12-S12-S10 For connection with box terminal	The S10 star jumper must be ordered separately, see page 3/114.	20	3RA1973-3E		1	1 unit	41B
	3RT1.7	S12-S12-S12 For connection without box terminal	--	15	3RA1973-2B		1	1 unit	41B
3RA1973-2B									

3RA $1953-2 \mathrm{~N}$

3RA1963-3E

3RA1973-3E

without box
terminal

The assembly kit contains:
(a double infeed between
the line contactor and
the delta contactor is recommended.)
connection
with box
terminal
connection
without box
terminal

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Link modules

PU (UNIT, SET, M)	$=1$
PS*	$=1$ unit (unless otherwise specified)
PG	$=41 \mathrm{~B}$

| For
 contactors | Size Version |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Type | |

Single wiring modules for making 3-pole contactor assemblies

Star jumpers (links for paralleling), 3-pole

3RT1916-4BA31

3RT2926-4BA32

3RT1946-4BA31

3RT1956-4BA31

3RT1966-4BA31
19

3RT1956-4BA31

3RT201 S00

The links for paralleling can be reduced by one pole.

3RT202 S0 terminal

[^23]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Connection modules/adapters

Selection and ordering data

3RT2926-4BB31

3RT203

S2 - Max. conductor cross-section: $120 \mathrm{~mm}^{2}$, stranded 2 3RT1936-4BB3
$1 \quad 1$ unit
41B

3RT1936-4BB31

3RT204, 3RT244	S3	Max. conductor cross-section: $185 \mathrm{~mm}^{2}$, stranded A cover plate is included for touch protection	20	3RT1946-4BB31	1	1 unit

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3RT231,
 3RT251 | 4-pole | | | |
| •Max. conductor cross-section: $25 \mathrm{~mm}^{2}$, stranded | 2 | 3RT1916-4BB41 | 1 unit | |

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Connection modules/adapters

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Connection modules/adapters

Selection and ordering data

3RT1946-4EA1

3RT2.4 S3 •Length: 100 mm
3RT1.5 S6 ${ }^{\mathbf{1})}$ •Length: 100 mm
3RT1.6, S10 ${ }^{\mathbf{1})}$, •Length: 120 mm
d

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Miscellaneous accessories

Selection and ordering data

For contactors with AC or DC operation

1	1 unit	41 B
1	1 unit	41 B
1	1 unit	41 B
1	1 unit	41 B
1	1 unit	41 B
1	1 unit	41 B

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Miscellaneous accessories

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Miscellaneous accessories

	For contactors	Size	Version	SD	Article No.	Price per PU	(UNIT, SET, M)	PS*	PG
	Type			d					
Insulation stop for securely holding back the conductor insulation for conductors up to $1 \mathrm{~mm}^{2}$									
					Spring-loaded terminals	00			
			Insulation stop strip Can be inserted in cable entry of the spring-loaded terminal (two strips per contactor required)						
	$\begin{aligned} & \text { 3RT2.1, } \\ & \text { 3RH2 } \end{aligned}$	S00	- For basic units, removable individually	2	3RT2916-4JA02		1	20 units	41B
3RT1916-4JA02	3RT2.2 3RT2.4, 3RT1, 3RH29	S0 ... S12	- For auxiliary and control current on basic units and for mountable 3RH29 auxiliary switches, removable in pairs	5	3RT1916-4JA02		1	20 units	41B
Tools for opening sp	ing-load	d terminals							
	3RT, 3RH	S00 ... S12	Screwdrivers For all SIRIUS devices with spring-loaded terminals	2	3RA2908-1A		1	1 unit	41B
			Length: approx. 200 mm , $3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$, titanium gray/black, partially insulated						
Blank labels									
			Unit labeling plates For SIRIUS devices ${ }^{1)}$						
	3RT	S00 ... S12	- $10 \mathrm{~mm} \times 7 \mathrm{~mm}$, titanium gray	20	3RT2900-1SB10		100	816 units	41B
			- $20 \mathrm{~mm} \times 7 \mathrm{~mm}$, titanium gray	20	3RT2900-1SB20		100	340 units	41B
$\frac{\square]_{0}}{\text { 3RT2900-1SB20 }}$			Adhesive labels For SIRIUS devices						
	3RT	S00 ... S12	- $19 \mathrm{~mm} \times 6 \mathrm{~mm}$, titanium gray	5	3RT2900-1SB60		100	3060 units	41B

${ }^{1)}$ PC labeling system for individual inscription of unit labeling plates available from:
murrplastik Systemtechnik GmbH
(see page 16/16).

Selection and ordering data

Screw terminals and spring-loaded terminals

Note:
Contactors with AC and AC/DC coils have different depths. It is only possible to replace the coils on AC contactors with AC coils. It is not possible to replace the coils on DC contactors.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Spare parts for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Solenoid coils

Screw terminals and spring-loaded terminals

3RT2934-5A. 01		3RT2934-5N. 31			3RT2944-5A.. 1			3RT2944-5N. 31		
For contactors	Rated $50 \mathrm{~Hz}$	ply voltage $50 / 60 \mathrm{~Hz}$	60 Hz	DC	SD	Article No.	$\begin{array}{r} \text { Price } \\ \text { per PU } \end{array}$	$\begin{gathered} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{gathered}$	PS*	PG
Type	V	v	v		d					
Solenoid coils - AC operation										
Size S2										
$\begin{aligned} & \text { 3RT203.-. A, } \\ & \text { 3RT233...A, } \\ & \text { 3RT243...A, } \\ & \text { 3RT253...A. } \end{aligned}$	$\begin{aligned} & 24 \\ & 42 \\ & 48 \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	-- -- --	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2934-5AB01 3RT2934-5AD01 3RT2934-5AH01		1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$41 B$ $41 B$ $41 B$
	$\begin{aligned} & 110 \\ & 230 \\ & 400 \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	-- -- -	$\begin{aligned} & -- \\ & -- \\ & \hline-- \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2934-5AF01 3RT2934-5AP01 3RT2934-5AV01		1	1 unit 1 unit 1 unit	418 418 418
	--	24	--	--	2	3RT2934-5AC21		1	1 unit	
	--	42	--	--	X	3RT2934-5AD21		1	1 unit	41 B
	--	48	--	--	5	3RT2934-5AH21		1	1 unit	41 B
	--	110	--	--	5	3RT2934-5AG21		1	1 unit	41 B
	--	208	--	--	5	3RT2934-5AM21		1	1 unit	41 B
	--	220	--	--	2	3RT2934-5AN21		1	1 unit	418
	--	230	--	--	5	3RT2934-5AL21		1	1 unit	41 B
	110	--	120	--	5	3RT2934-5AK61		1	1 unit	41 B
	220	--	240	--	5	3RT2934-5AP61		1	1 unit	41 B
	--	--	480	--	5	3RT2934-5AV61		1	1 unit	41 B
	--	--	600	--	5	3RT2934-5AT61		1	1 unit	41 B
	--	100	110	--	\times	3RT2934-5AG61		1	1 unit	41 B
	--	200	220	--	5	3RT2934-5AN61		1	1 unit	41 B
	--	--	277	--	\times	3RT2934-5AU61		1	1 unit	418
	--	400	440	--	2	3RT2934-5AR61		1	1 unit	41 B

Size S3

3RT204.-. A,	24	--	--	--	5	3RT2944-5AB01	1	1 unit	41B
3RT234.-. A,	42	--	--	--	10	3RT2944-5AD01	1	1 unit	41B
3RT244.-. A,	48	--	--	--	5	3RT2944-5AH01	1	1 unit	41B
3RT254.-A	110	--	--	--	5	3RT2944-5AF01	1	1 unit	41B
	230	--	--	--	5	3RT2944-5AP01	1	1 unit	41B
	400	--	--	--	5	3RT2944-5AV01	1	1 unit	41B
	--	24	--	--	5	3RT2944-5AC21	1	1 unit	41B
	--	42	--	--	10	3RT2944-5AD21	1	1 unit	41B
	--	48	--	--	5	3RT2944-5AH21	1	1 unit	41B
	--	110	--	--	2	3RT2944-5AG21	1	1 unit	41B
	--	220	--	--	5	3RT2944-5AN21	1	1 unit	41B
	--	230	--	--	5	3RT2944-5AL21	1	1 unit	41B
	110	--	120	--	5	3RT2944-5AK61	1	1 unit	41B
	220	--	240	--	5	3RT2944-5AP61	1	1 unit	41B
	--	--	480	--	5	3RT2944-5AV61	1	1 unit	41B
	--	--	600	--	5	3RT2944-5AT61	1	1 unit	41B
	--	100	110	--	10	3RT2944-5AG61	1	1 unit	41B
	--	200	220	--	5	3RT2944-5AN61	1	1 unit	41B
	--	400	440	--	5	3RT2944-5AR61	1	1 unit	41B

Solenoid coils • AC/DC operation, with varistor
Size S2

$\begin{aligned} & \text { 3RT203.-.N, } \\ & \text { 3RT233.-.N } \end{aligned}$		20.33							
	--	$\begin{aligned} & 20 \ldots 33 \\ & 30 \ldots 42 \end{aligned}$	--	$20 \ldots 3$ $30 . .42$	$\begin{aligned} & 5 \\ & \times \end{aligned}$	3RT2934-5NB31	1	1 unit	41 B
	--		--	$48 . . .80$	10	3RT2934-5NE31	1	1 unit	41B
	--	$83 . .155$	--	$83 . .155$	X	3RT2934-5NF31	1	1 unit	41B
	--	175 ... 280	--	175 ... 280	5	3RT2934-5NP31	1	1 unit	41B
Size S3									
$\begin{aligned} & \text { 3RT204.-.N, } \\ & \text { 3RT234..N, } \\ & \text { 3RT244...N, } \\ & \text { 3RT254...N } \end{aligned}$	--	$20 . .33$	--	$20 . .33$	5	3RT2944-5NB31	1	1 unit	41B
	--	$30 . .42$	--	$30 . . .42$	10	3RT2944-5ND31	1	1 unit	41B
	--	$48 . . .80$	--	48 ... 80	5	3RT2944-5NE31	1	1 unit	41B
	--	83 ... 155	--	83 ... 155	5	3RT2944-5NF31	1	1 unit	41B
	--	$175 . .280$	--	$175 . .280$	5	3RT2944-5NP31	1	1 unit	41B

Note:
It is only possible to replace the coils on AC contactors with
AC coils, and on AC/DC contactors with AC/DC coils.

$\mathrm{PU}(\mathrm{UNIT}, \mathrm{SET}, \mathrm{M})$	$=1$
PS	$=1 \mathrm{unit}$
PG	$=41 \mathrm{~B}$

3RT1955-5A. 31

3RT1955-5A. 32

3RT1955-5N. 31

3RT1955-5X. 42

Standard operating mechanism for AC/DC
S6 3RT105, 23 ... 26 AC/DC
$3 R T 145 \quad 42 \ldots 48$ AC/DC $110 \ldots 127$ AC/DC
$200 \ldots 220$ AC/DC
220 ... 240 AC/DC
$\begin{array}{lll}240 \ldots 277 \text { AC/DC } & \text { 3RT1955-5AP31 } \\ & 5 & \text { 3RT1955-5AU31 }\end{array}$
380 ... 420 AC/DC 5 3RT1955-5AV31
$440 \ldots 480$ AC/DC 5 3RT1955-5AR31
500 ... 550 AC/DC 5 3RT1955-5AS31 3RT1955-5AT31 3RT1965-5AB31 3RT1965-5AD31 3RT1965-5AF31 3RT1965-5AM31 3RT1965-5AP31 3RT1965-5AU31 3RT1965-5AV31 3RT1965-5AR31 3RT1965-5AS31 3RT1965-5AT31 3RT1975-5AB31
3RT1975-5AD31 3RT1975-5AD31 3RT1975-5AF31 3RT1975-5AM31 3RT1975-5AP31 3RT1975-5AU31 3RT1975-5AU31
3RT1975-5AV31 3RT1975-5AR31 3RT1975-5AS31 3RT1975-5AT31

5	3RT1955-5AB32
X	3RT1955-5AD32
5	3RT1955-5AF32
5	3RT1955-5AM32
-	3RT1955-5AP32
X	3RT1955-5AU32
5	3RT1955-5AV32
X	3RT1955-5AR32
X	3RT1955-5AS32
X	3RT1955-5AT32
5	3RT1965-5AB32
X	3RT1965-5AD32
5	3RT1965-5AF32
X	3RT1965-5AM32
5	3RT1965-5AP32
X	3RT1965-5AU32
5	3RT1965-5AV32
X	3RT1965-5AR32
X	3RT1965-5AS32
X	3RT1965-5AT32
5	3RT1975-5AB32
X	3RT1975-5AD32
X	3RT1975-5AF32
X	3RT1975-5AM32
5	3RT1975-5AP32
X	3RT1975-5AU32
X	3RT1975-5AV32
5	3RT1975-5AR32
X	3RT1975-5AS32
X	3RT1975-5AT32

Solid-state operating mechanism for AC/DC with 24 V DC control signal input e.g. for control by PLC

S6	$\begin{aligned} & \text { 3RT105, } \\ & \text { 3RT145 } \end{aligned}$	$\begin{aligned} & 21 \ldots 27.3 \mathrm{AC} / \mathrm{DC} \\ & 96 \ldots 127 \mathrm{AC} / \mathrm{DC} \\ & 200 \ldots 277 \mathrm{AC} / \mathrm{DC} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT1955-5NB31 3RT1955-5NF31 3RT1955-5NP31	$\begin{aligned} & X \\ & X \\ & 5 \\ & \hline \end{aligned}$	3RT1955-5NB32 3RT1955-5NF32 3RT1955-5NP32
S10	$\begin{aligned} & \text { 3RT106, } \\ & \text { 3RT146 } \end{aligned}$	$\begin{aligned} & 21 \ldots 27.3 \mathrm{AC} / \mathrm{DC} \\ & 96 \ldots 127 \mathrm{AC} / \mathrm{DC} \\ & 200 \ldots 277 \mathrm{AC} / \mathrm{DC} \\ & \hline \end{aligned}$	5 5 5	3RT1965-5NB31 3RT1965-5NF31 3RT1965-5NP31	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	3RT1965-5NB32 3RT1965-5NF32 3RT1965-5NP32
S12	$\begin{aligned} & \text { 3RT107, } \\ & \text { 3RT147 } \end{aligned}$	$\begin{aligned} & 21 \ldots 27.3 \mathrm{AC} / \mathrm{DC} \\ & 96 \ldots . .127 \mathrm{AC} / \mathrm{DC} \\ & 200 \ldots 277 \mathrm{AC} / \mathrm{DC} \end{aligned}$	5 5 5	3RT1975-5NB31 3RT1975-5NF31 3RT1975-5NP31	$\begin{aligned} & \hline X \\ & 5 \\ & 5 \end{aligned}$	3RT1975-5NB32 3RT1975-5NF32 3RT1975-5NP32
- Additionally with PLC relay output and remaining lifetime indicator (RLT) (withdrawable coil with laterally mounted solid-state module)						
S6	$\begin{aligned} & \text { 3RT105, } \\ & \text { 3RT145 } \end{aligned}$	$\begin{aligned} & 96 \ldots 127 \text { AC/DC } \\ & 200 \text {... } 277 \text { AC/DC } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1955-5PF31 3RT1955-5PP31		--
S10	$\begin{aligned} & \hline \text { 3RT106, } \\ & \text { 3RT146 } \end{aligned}$	$\begin{aligned} & 96 \ldots 127 \mathrm{AC} / \mathrm{DC} \\ & 200 \ldots 277 \mathrm{AC} / \mathrm{DC} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1965-5PF31 3RT1965-5PP31		--
S12	$\begin{aligned} & \text { 3RT107, } \\ & \text { 3RT147 } \end{aligned}$	$\begin{aligned} & 96 \ldots 127 \mathrm{AC} / \mathrm{DC} \\ & 200 \ldots 277 \mathrm{AC} / \mathrm{DC} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \text { 3RT1975-5PF31 } \\ & \text { 3RT1975-5PP31 } \end{aligned}$		--

Solid-state operating mechanism for DC with 24 ... 110 V DC control signal input e.g. for control by PLC with extended application range
(see also contactors for railway applications on page 4/61)

S6	$\begin{aligned} & \text { 3RT105....X...- } \\ & \text { OLA2 } \end{aligned}$	$\begin{aligned} & 24 \text { DC } \\ & 72 \text { DC } \\ & 110 \text { DC } \end{aligned}$		$\begin{aligned} & 5 \\ & x \\ & 5 \end{aligned}$	3RT1955-5XB42 3RT1955-5XJ42 3RT1955-5XF42
S10	$\begin{aligned} & \text { 3RT106....X...- } \\ & \text { OLA2 } \end{aligned}$	$\begin{aligned} & 24 \mathrm{DC} \\ & 72 \mathrm{DC} \\ & 110 \mathrm{DC} \end{aligned}$	--	5 \times 5	3RT1965-5XB42 3RT1965-5XJ42 3RT1965-5XF42
S12	$\begin{aligned} & \text { 3RT107....X...- } \\ & \text { OLA2 } \end{aligned}$	$\begin{aligned} & 24 \text { DC } \\ & 72 \text { DC } \\ & 110 \text { DC } \end{aligned}$	--	5 \times 5	3RT1975-5XB42 3RT1975-5XJ42 3RT1975-5XF42

Note:
In the case of 3RT10..-.S contactors with fail-safe control inputs, removing and replacing the operating mechanism are not permitted.

Switching devices - Contactors and contactor assemblies - for switching motors
 Power contactors for switching motors

Spare parts for SIRIUS 3RT contactors and SIRIUS 3RH2 contactor relays > Contacts and arc chutes
Selection and ordering data

For contactors	Version	SD	Article No.	Price per PU	PU (UNIT,
SizeT, M)					

Contacts with fixing parts

For contactors with 3 main contacts

3RT1954-6A

S2	3RT2035	Main contacts (3 NO contacts)
3RT2036	for utilization category AC-3	
3RT2037		

5	3RT2935-6A	1	1 unit	41B
5	3RT2936-6A	1	1 unit	41B
5	3RT2937-6A	1	1 unit	41B
5	3RT2938-6A	1	1 unit	41B
2	3RT2945-6A	1	1 unit	41B
2	3RT2946-6A	1	1 unit	41B
5	3RT2947-6A	1	1 unit	41B
-	3RT1954-6A	1	1 unit	41B
-	3RT1955-6A	1	1 unit	41B
$\stackrel{\rightharpoonup}{ }$	3RT1956-6A	1	1 unit	41B
-	3RT1964-6A	1	1 unit	41B
-	3RT1965-6A	1	1 unit	41B
-	3RT1966-6A	1	1 unit	41B
-	3RT1975-6A	1	1 unit	41B
\checkmark	3RT1976-6A	1	1 unit	41B
10	3RT2946-6D	1	1 unit	41B
10	3RT2948-6D	1	1 unit	41B
5	3RT1956-6D	1	1 unit	41B
5	3RT1966-6D	1	1 unit	41B
10	3RT1967-6D	1	1 unit	41B
5	3RT1976-6D	1	1 unit	41B

3RT197.-6A, 3RT1976-6D

For contactors with 4 main contacts

Arc chutes

For contactors with 3 main contacts

$$
\begin{array}{ll}
\text { 3RT2336 } & \text { Main contacts (4 NO contacts) } \\
\text { 3RT2337 } & \text { for utilization category AC-1 }
\end{array}
$$

10	3RT2936-6E	1	1 unit	$41 B$
10	3RT2937-6E	1	1 unit	$41 B$

(1 set $=3$ movable and 6 fixed switching elements and spare pole with fixing parts)

3RT195.-7.

S10	3RT1064 3RT1065 3RT1066 3RT1466 3R14

3RT196.-7.

S12	3RT1075 3RT1076 3RT1476
	3R

3RT197.-7.

3RT1054 3RT1055 3RT1056 3RT1456

Only for contactors with AC/DC coil
3RT1476

5	3RT1954-7A	1	1 unit	41B
5	3RT1955-7A	1	1 unit	41B
5	3RT1956-7A	1	1 unit	41B
5	3RT1956-7B	1	1 unit	41B
5	3RT1964-7A	1	1 unit	41B
5	3RT1965-7A	1	1 unit	41B
5	3RT1966-7A	1	1 unit	41B
5	3RT1966-7B	1	1 unit	41B
5	3RT1975-7A	1	1 unit	41B
5	3RT1976-7A	1	1 unit	41B
5	3RT1976-7B	1	1 unit	41B

Overview

Vacuum contactors

Standards
IEC/EN 60947-1,
IEC/EN 60947-4-1,
IEC/EN 60947-5-1 (auxiliary switches)
The SIRIUS 3RT12 and 3TF68/3TF69 vacuum contactors are suitable for use in any climate. They are finger-safe according to IEC 60529. Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices (see pages $3 / 119$ and $3 / 140$).

Connection methods

The vacuum contactors are available with screw terminals (box terminals).

Contact reliability

If voltages $\leq 110 \mathrm{~V}$ and currents $\leq 100 \mathrm{~mA}$ are to be switched, the auxiliary contacts of the vacuum contactors or 3RH contactor relays should be used as they guarantee a high level of contact reliability.

These auxiliary contacts are particularly suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage $\geq 17 \mathrm{~V}$.

Short-circuit protection

For short-circuit protection of the vacuum contactors with or without overload relays, refer to the Manuals and Configuration Manuals, see "More information" on page 3/128.

Electromagnetic compatibility (EMC)
The contactors with solid-state operating mechanism comply with the international standards IEC/EN 60947-1 and IEC/EN 60947-4-1.
These contactors have been developed for environment A.
Note:
Environment A refers to private low-voltage or industrial networks/locations/plants, including high-grade sources of interference.

Environment A corresponds to devices of Class A with CISPR 11, EN 55011

Note:

In connection with converters, the control cables must be routed separately from the load cables to the converter.

Motor protection

For protection against overload, 3RB2 electronic overload relays (see page 7/123 onwards) can be mounted onto the vacuum contactors. These must be ordered separately.

Ratings of three-phase motors

The quoted rating (in kW) refers to the output power on the motor shaft (according to the nameplate).
The power rating specifications of the vacuum contactors in kW are guide values for 4-pole standard motors at 50 Hz AC and specified voltage (e.g. 400 V). The specific starting and rated data of the motor to be switched are decisive when it comes to selecting the right devices, and the motor current, motor protection device and the permissible contactor current according to the utilization category must be aligned with each other when doing so.

Surge suppression

The vacuum contactors can be retrofitted with varistors for damping opening overvoltages in the coil.

Note:
The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 to 5 ms)
Vacuum contactors are basically unsuitable for switching DC voltage.

SIRIUS 3RT12 vacuum contactors, 3-pole, 110 to 250 kW

AC/DC operation
The contactors can be operated with AC (50 to 60 Hz) as well as with DC
Two types of solenoid operation are available:

- Standard operating mechanism with economy circuit for AC and DC operation (switchover from closing coil to holding coil), version 3RT12..-. A
- Solid-state operating mechanism,-version 3RT12..-. N

Withdrawable coils
For simple coil replacement, e.g. if the application is replaced, the solenoid coil can be pulled out upwards after the release mechanism has been actuated and can be replaced by any other coil of the same size.

Vacuum interrupters

In contrast to the 3RT10 contactors - the main contacts operate in air under atmospheric conditions - the contact gaps of the 3RT12 vacuum contactors are contained in hermetically enclosed vacuum interrupters. Neither arcs nor arcing gases are produced. The particular benefit of 3RT12 vacuum contactors, however, is that their electrical endurance is at least twice as long as that of 3RT10 contactors. They are therefore particularly well suited to frequent switching in inching/mixed operation, e.g. in crane control systems.

Auxiliary contact complement

The 3RT12 vacuum contactors of sizes S10 to S12 are supplied with laterally mounted auxiliary switches. These can be fitted with up to eight lateral auxiliary contacts (identical auxiliary switches for S10 and S12). Of these, no more than four are permitted to be NC contacts.

3TF6 vacuum contactors, 3-pole, 335 to 450 kW

Main contacts
Contact erosion indication with 3TF68/3TF69 vacuum contactors: The contact erosion of the vacuum interrupters can be checked during operation with the help of three white double slides on the contactor base. If the distance indicated by one of the double slides is $<0.5 \mathrm{~mm}$ while the contactor is in the closed position, the vacuum interrupter must be replaced. To ensure maximum reliability, it is recommended to replace all three vacuum interrupters simultaneously.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT12 and 3TF6 vacuum contactors

Auxiliary contacts

Contact reliability:
These auxiliary contacts are particularly suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage $\geq 17 \mathrm{~V}$.

Protection of the main current paths

An integrated RC varistor connection for the main current paths dampens the switching overvoltage rises to safe values. This prevents multiple restricting. It can therefore be assumed that the motor winding cannot be damaged by switching overvoltages with steep voltage rises.
During operation in installations in which the emitted interference limits cannot be observed, e.g. when used for output contactors in converters, 3TF68/3TF69..-. Q vacuum contactors - without connection of the main current path circuit - are recommended

Technical specifications

Unless otherwise listed on subsequent pages, the technical specifications of the SIRIUS 3RT12 vacuum contactors correspond to those of the 3RT10 basic units; see pages 3/23; and $3 / 48$ to $3 / 54$.

More information

Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/16137/td
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16137/faq
System Manual for modular system, see
https://support.industry.siemens.com/cs/ww/en/view/60311318
Equipment Manual, see
https://support.industry.siemens.com/cs/ww/en/view/60306557
Application Manual for controls with IE3/IE4 motors, see
https://support.industry.siemens.com/cs/ww/en/view/94770820
Configuration Manual for load feeders, see
https://support. industry.siemens.com/cs/ww/en/view/39714188
Configuration Manual for UL, see
https://support.industry.siemens.com/cs/ww/en/view/53433538

	SIRIUS vacuum contactors
Type	3RT12
Size	S10 and S12

Contact endurance of the main contacts

The characteristic curves show the contact endurance of the contactors when switching low inductive or non-inductive AC loads (AC-1) and motor-driven loads (AC-3) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
The rated operational current I_{e} complies with utilization category AC-4 (breaking 6 times the rated operational current) and is intended for a contact endurance of approximately 200000 operating cycles.
If a shorter contact endurance is sufficient, the rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4$ can be increased.
If the contacts are used for mixed operation, i.e. normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category AC-4), the contact endurance can be calculated approximately from the following equation:

$$
X=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}
$$

Characters in the equation:
X Contact endurance for mixed operation in operating cycles
A Contact endurance for normal operation
($I_{\mathrm{a}}=I_{\mathrm{e}}$) in operating cycles
B Contact endurance for inching ($I_{\mathrm{a}}=$ multiple of I_{e}) in operating cycles
C Inching operations as a percentage of total switching operations

Type		Vacuum contactors		
		3TF6		
Size		14		
Rated data of the auxiliary contacts		According to IEC 60947-5-1		
Rated insulation voltage \boldsymbol{U}_{i} (pollution degree 3)	V	690		
Conventional thermal current $I_{\text {th }}=$ rated operational current $I_{\mathrm{e}} /$ AC-12	A	10		
AC load Rated operational current $I_{\mathrm{e}} / \mathrm{AC}-15 / \mathrm{AC}-14$ - At rated operational voltage $U_{\text {e }}$				
- At 24 V - At 110 V - At 125 V - At 220 V - At 230 V	A A A A A	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 6 \\ & 5.6 \end{aligned}$		
- At 380 V - At 400 V - At 500 V - At 660 V - At 690 V	A A A A A	$\begin{aligned} & 4 \\ & 3.6 \\ & 2.5 \\ & 2.5 \\ & 2.3 \end{aligned}$		
DC load Rated operational current $I_{\mathrm{e}} / \mathrm{DC}$-12 - At rated operational voltage U_{e}				
- At 24 V - At 60 V - At 110 V - At 125 V	A A A A	$\begin{aligned} & 10 \\ & 10 \\ & 3.2 \\ & 2.5 \end{aligned}$		
- At 220 V - At 440 V - At 600 V	A A A	$\begin{aligned} & 0.9 \\ & 0.33 \\ & 0.22 \end{aligned}$		
Rated operational current $I_{\mathrm{e}} / \mathrm{DC}$-13 - At rated operational voltage U_{e}			Auxiliary contacts with delayed NC contact:	NS = No specification
- At 24 V - At 60 V - At 110 V - At 125 V	A A A A	$\begin{aligned} & 10 \\ & 5 \\ & 1.14 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 6 \\ & \text { N S } \\ & 0.98 \\ & \text { N S } \end{aligned}$	
- At 220 V - At 440 V - At 600 V	A A A	$\begin{aligned} & 0.48 \\ & 0.13 \\ & 0.07 \end{aligned}$	$\begin{aligned} & \text { N S } \\ & \text { N S } \\ & 0.07 \end{aligned}$	

(C) and (1) rated data of the auxiliary contacts

Rated voltage, max.
Switching capacity

VAC 600

A 600, P 600
Endurance of the auxiliary contacts
The contact endurance for utilization category AC-12 or AC-15/AC-14 depends mainly on the breaking current. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
The characteristic curves apply to 230 V AC.

Contact erosion indication with vacuum

contactors
The contact erosion of the vacuum interrupters can be checked during operation with the help of three white double slides on the contactor base.
If the distance indicated by one of the double slides is $<0.5 \mathrm{~mm}$ while the contactor is in the closed position, the vacuum interrupter must be replaced. To ensure maximum reliability, it is recommended to replace all three vacuum interrupters at once.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT12 and 3TF6 vacuum contactors

	Vacuum contactors
Type	3 TF6
Size	14

Contact endurance of the main contacts

The characteristic curves show the contact endurance of the contactors when switching low inductive or non-inductive AC loads (AC-1) and motor-driven loads (AC-3) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
The rated operational current $I_{\text {e }}$ complies with utilization category AC-4 (breaking 6 times the rated operational current) and is intended for a contact endurance of approximately 200000 operating cycles.
If a shorter contact endurance is sufficient, the rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4$ can be increased
If the contacts are used for mixed operation, i.e. normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category AC-4), the contact endurance can be calculated approximately from the following equation:

$$
X=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}
$$

Characters in the equation:
X Contact endurance for mixed operation in operating cycles
A Contact endurance for normal operation ($I_{\mathrm{a}}=I_{\mathrm{e}}$) in operating cycles
B Contact endurance for inching ($I_{\mathrm{a}}=$ multiple of I_{e}) in operating cycles
C Inching operations as a percentage of total switching operations

TypeSize		SIRIUS vacuum contactors		Vacuum contactors	
		3RT126	3RT127	3TF68	3TF69
		S10	S12	14	
General data					
Dimensions (W x H x D)		$145 \times 210 \times 206$	$160 \times 214 \times 225$	$230 \times 276 \times 237$	$230 \times 295 \times 237$
The contactors are designed for operation on a vertical mounting surface.					
- To easily replace the laterally mounted auxiliary switches it is recommended to maintain a minimum distance of 30 mm between the contactors.		No	No	Yes	
Mechanical endurance	Operating cycles	10 million		5 million	
Electrical endurance					
Contact endurance of the main contacts		See page 3/128		See above	
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)		1			
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	8			
Protective separation between the coil and the main contacts V acc. to IEC 60947-1, Appendix N		690		1000	
Mirror contacts		Yes, acc. to IEC 60947-4-1, Appendix F		Yes, acc. to IEC	7-4-1, Appendix F
A mirror contact is an auxiliary NC contact that cannot be closed simultaneously with an NO main contact.				One NC contact each must be connected in series for the left and right auxiliary switch respectively.	

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT12 and 3TF6 vacuum contactors

[^24]| Type | | | SIRIUS vacuum contactors | | | | | Vacuum contactors | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 3RT1264 | 3RT1265 | 3RT1266 | 3RT1275 | 3RT1276 | 3TF68 | 3TF69 |
| Size | | | S10 | | | S12 | | 14 | |
| Rated data of the main contacts | | | | | | | | | |
| Load rating with AC | | | | | | | | | |
| Utilization category AC-1 | | | | | | | | | |
| - Rated operational currents I_{e} | - At $40^{\circ} \mathrm{C}$ up to 690 V | A | 330 | | | 610 | | 700 | 910 |
| | - At $40^{\circ} \mathrm{C}$ up to 1000 V | A | 330 | | | 610 | | -- | |
| | - At $55^{\circ} \mathrm{C}$ up to 690 V | A | -- | | | | | 630 | 850 |
| | - At $55^{\circ} \mathrm{C}$ up to 1000 V | A | | | | | | 450 | 800 |
| | - At $60^{\circ} \mathrm{C}$ up to 1000 V | A | 300 | | | 550 | | -- | |
| - Rated power for AC loads ${ }^{1)}$ with p.f. $=0.95$ | | | At $60{ }^{\circ} \mathrm{C}$ | | | At $60{ }^{\circ} \mathrm{C}$ | | At $55{ }^{\circ} \mathrm{C}$ | At $55{ }^{\circ} \mathrm{C}$ |
| | - At 230 V | kW | 113 | | | 208 | | 240 | 323 |
| | - At 400 V | kW | 197 | | | 362 | | 415 | 558 |
| | - At 500 V | kW | 246 | | | 452 | | 545 | 735 |
| | - At 690 V | kW | 340 | | | 624 | | 720 | 970 |
| | - At 1000 V | kW | 492 | | | 905 | | 780 | 1385 |
| - Minimum cross-section in the main circuit for max. AC-1 rated value | | mm^{2} | 185 | | | 370 | | 480 | $\begin{aligned} & I_{\mathrm{e}} \geq 800 \mathrm{~A}: \\ & 2 \times 60 \times 5 \\ & \text { (copper busbars) } \end{aligned}$ |
| Utilization categories AC-2 and AC-3 | | | | | | | | | |
| - Rated operational currents I_{e} | - Up to 690 V | A | $--$ | | | | | 630 | 820 |
| | - Up to 1000 V | | | 265 | 300 | 40 | 500 | | |
| - Rated power for slipring or squirrel-cage motors at 50 and 60 Hz | - At 230 V
 - At 400 V | $\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$ | $\begin{aligned} & 73 \\ & 128 \end{aligned}$ | $\begin{aligned} & 85 \\ & 151 \end{aligned}$ | $\begin{aligned} & 97 \\ & 171 \end{aligned}$ | $\begin{aligned} & 132 \\ & 231 \\ & \hline \end{aligned}$ | $\begin{aligned} & 164 \\ & 291 \end{aligned}$ | $\begin{aligned} & 200 \\ & 347 \end{aligned}$ | $\begin{aligned} & 260 \\ & 450 \end{aligned}$ |
| | - At 500 V | kW | 160 | 189 | 215 | 291 | 363 | 434 | 600 |
| | - At 690 V | kW | 223 | 265 | 288 | 400 | 507 | 600 | 800 |
| | - At 1000 V | kW | 320 | 378 | 428 | 578 | 728 | 600 | 800 |
| Thermal load capacity, 10 s current | | A | 1800 | 2120 | 2400 | 3200 | 4000 | 5040 | 7000 |
| Power loss per conducting path at $I_{\mathrm{e}} / \mathrm{AC}-3$ | | W | 9 | 12 | 14 | 21 | 32 | 45 | 70 |
| Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$) | | | | | | | | | |
| Maximum values: | | | | | | | | | |
| - Rated operational current I_{e} | - Up to 690 V | A | 195 | 230 | 280 | 350 | 430 | 610 | 690 |
| - Rated power for squirrel-cage motors with 50 Hz and 60 Hz | $\text { - At } 400 \text { V }$ | kW | 110 | 132 | 160 | 200 | 250 | 355 | 400 |
| The following applies to a contact endurance of about 200000 operating cycles: | | | | | | | | | |
| - Rated operational currents I_{e}
 - Rated power for squirrel-cage motors with 50 Hz and 60 Hz | - Up to 690 V
 - Up to 1000 V | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 97 \\ & 68 \end{aligned}$ | $\begin{aligned} & 115 \\ & 81 \end{aligned}$ | $\begin{aligned} & 140 \\ & 98 \end{aligned}$ | $\begin{aligned} & 175 \\ & 123 \end{aligned}$ | $\begin{aligned} & 215 \\ & 151 \end{aligned}$ | $\begin{aligned} & 300 \\ & 210 \end{aligned}$ | $\begin{aligned} & 360 \\ & 250 \end{aligned}$ |
| | - At 230 V
 - At 400 V
 - At 500 V
 - At 690 V
 - At 1000 V | $\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$ | $\begin{aligned} & 30 \\ & 55 \\ & 68 \\ & 94 \\ & 95 \\ & \hline \end{aligned}$ | $\begin{aligned} & 37 \\ & 65 \\ & 81 \\ & 112 \\ & 114 \end{aligned}$ | $\begin{aligned} & 45 \\ & 79 \\ & 98 \\ & 138 \\ & 140 \\ & \hline \end{aligned}$ | $\begin{aligned} & 56 \\ & 98 \\ & 124 \\ & 172 \\ & 183 \end{aligned}$ | $\begin{aligned} & 70 \\ & 122 \\ & 153 \\ & 212 \\ & 217 \end{aligned}$ | $\begin{aligned} & 97 \\ & 168 \\ & 210^{2)} \\ & 278^{2)} \\ & 290^{2)} \end{aligned}$ | $\begin{aligned} & 110 \\ & 191 \\ & 250^{2)} \\ & 335^{2)} \\ & 350^{2)} \end{aligned}$ |
| Switching frequency | | | | | | | | | |
| Switching frequency \boldsymbol{z} in operating cycles/hour | | | | | | | | | |
| Contactors without overload relays | | | | | | | | | |
| - No-load switching frequency | - AC/DC | 1/h | Standard operating mechanism: 2 000, Solid-state operating mechanism: 1000 | | | | | | |
| | $\begin{aligned} & -A C \\ & -D C \end{aligned}$ | $\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$ | | | | | | $\begin{aligned} & 2000 \\ & 1000 \end{aligned}$ | 1000 |
| - Switching frequency z during rated operation ${ }^{3}$) | - $I_{\mathrm{e}} / \mathrm{AC}-1$ at 400 V
 - $I_{\mathrm{e}} / \mathrm{AC}-2$ at 400 V
 - $I_{\mathrm{e}} / \mathrm{AC}-3$ at 400 V
 $-I_{\mathrm{e}} / \mathrm{AC}-4$ at 400 V | $\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$ | $\begin{aligned} & 800 \\ & 300 \\ & 750 \\ & 250 \\ & \hline \end{aligned}$ | $\begin{aligned} & 750 \\ & 250 \end{aligned}$ | | | | $\begin{aligned} & 700 \\ & 200 \\ & 500 \\ & 150 \\ & \hline \end{aligned}$ | |
| Contactors with overload relays | | | | | | | | | |
| - Mean value | | 1/h | 60 | | | | | 15 | |

[^25] for reduced contact endurance and reduced switching frequency.

[^26]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT12 and 3TF6 vacuum contactors

	SIRIUS vacuum contactors		Vacuum contactors	
Type	3RT126	3RT127	3TF68	3TF69
Size	S10	S12	14	

Conductor cross-sections

Main conductors (1 or 2 conductors can be connected)
With mounted box terminals

- Terminal screws - Tightening torque

(Screw terminals

3RT1966-4G
M12 (hexagon socket, A/F 5)
20 ... 22 (180 ... $195 \mathrm{lb} . \mathrm{in}$)

Front clamping point connected

- Finely stranded with end sleeve (DIN 46228)
- Finely stranded without end sleeve
- Stranded
- AWG cables, solid or stranded
- Ribbon cable conductors (number \times width \times thickness)
Rear clamping point connected

- Finely stranded with end sleeve (DIN 46228)
- Finely stranded without end sleeve
- Stranded
- AWG cables, solid or stranded
- Ribbon cable conductors (number \times width \times thickness)
Both clamping points connected

- Finely stranded with end sleeve (DIN 46228)
- Finely stranded without end sleeve
- Stranded
- AWG cables, solid or stranded
- Ribbon cable conductors (number \times width x thickness)

1) When connecting cable lugs according to DIN 46234 for conductor crosssections larger than $240 \mathrm{~mm}^{2}$ and according to DIN 46235 for conductor cross-sections larger than $185 \mathrm{~mm}^{2}$, the 3RT1966-4EA1 terminal cover is required to maintain the phase clearance, see page 3/119.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

Type		SIRIUS vacuum contactors					Vacuum contactors	
		3RT1264	3RT1265	3RT1266	3RT1275	3RT1276	3TF68	3TF69
Size		S10			S12		14	
(13) and (1T) rated data								
Rated insulation voltage	V AC	600					600	
Uninterrupted current at $40^{\circ} \mathrm{C}$, open and enclosed	A	330			540		630	820
Maximum horsepower ratings (from (®l and (IL) approved values)								
- Rated power for three-phase motors at 60 Hz								
- At 200 V	hp	60	75	100	125	150	231	290
- At 230 V	hp	75	100	125	150	200	266	350
- At 460 V	hp	150	200	250	300	400	530	700
- At 575 V	hp	200	250	300	400	500	664	860
NEMA/EEMAC ratings								
SIZE	hp	--					6	7
- Uninterrupted current								
- Open	A	--					600	820
- Enclosed	A	--					540	810
- Rated power for three-phase motors at 60 Hz								
- At 200 V	hp	--					150	--
- At 230 V	hp	--					200	300
- At 460 V	hp	--					400	600
- At 575 V	hp	--					400	600
Short-circuit protection ${ }^{1)}$	kA	10	18			30	100	
- CLASS L fuse	A	600	700	800	1000	1200	1600	
- Circuit breakers acc. to UL 489	A	500	700	800	1000	1200	On req	

1) For more information about short-circuit values, e.g. for protection against short-circuit currents, see Certificate of Compliance for the individual devices.
For the selection and dimensioning of load feeders,
see UL Configuration Manual and the
UL guide "Competitive control panels for the North American market".

Switching devices - Contactors and contactor assemblies - for switching motors
 Power contactors for switching motors

Selection and ordering data

SIRIUS 3RT12 vacuum contactors, 3-pole, 110 to 250 kW

AC/DC operation \approx

- Standard operating mechanism 3RT12...-.A
- 3RT12..-.N solid-state operating mechanism with 24 V DC control signal input
- For screw fixing
- Auxiliary and control conductors: Screw terminals
- Main conductors: Busbar connections; a connection kit with screws, spring washers and nuts is enclosed.

3RT1264-6AF36

3RT127.-6N. 36

Size							Auxiliary contacts, lateral	Rated control	SD	Screw terminals	9		PS*	PG
	AC-2 and AC-3, t_{u} : Up to $60^{\circ} \mathrm{C}$					$\begin{aligned} & \mathrm{AC}-1, \\ & t_{\mathrm{u}}: 40^{\circ} \mathrm{C} \end{aligned}$		supply voltage U_{S} $50 / 60 \mathrm{~Hz}$ AC or DC				(UNIT, SET, M)		
	Opera- Rating of three-phase motors tional current I_{e} up to at 50 Hz and					Opera- tional current $I_{\text {e }}$ up to				Article No.	Price per PU			
	1000 V	230 V	400 V	500 V	690 V	1000 V								
	A	kW	kW	kW	kW	A	NO NC	V	d					

Standard operating mechanism with economy circuit for AC and DC operation (switchover from closing coil to holding coil)

With integrated coil circuit (varistor integrated at the factory)														
S10	225	55	110	160	200	330	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	2	$\begin{aligned} & \text { 3RT1264-6AF36 } \\ & \text { 3RT1264-6AP36 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	265	75	132	160	250	330	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	$\begin{aligned} & 10 \\ & 5 \end{aligned}$	3RT1265-6AF36 3RT1265-6AP36	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	300	90	160 ${ }^{1)}$	200	250	330	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	3RT1266-6AF36 3RT1266-6AP36	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
S12	400	132	200	250	400	610	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RT1275-6AF36 } \\ & \text { 3RT1275-6AP36 } \end{aligned}$	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	500	160	250 ${ }^{1)}$	355	500	610	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	5	3RT1276-6AF36 3RT1276-6AP36	1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$

Solid-state operating mechanism

With 24 V DC control signal input

e.g. for control by PLC

With integrated coil circuit (varistor integrated in electronics at the factory)

S10	225	55	110	160	200	330	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	3RT1264-6NF36 3RT1264-6NP36	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
	265	75	132	160	250	330	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	3RT1265-6NF36 3RT1265-6NP36	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	300	90	160	200	250	330	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	3RT1266-6NF36 3RT1266-6NP36	1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
S12	400	132	200	250	400	610	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { 3RT1275-6NF36 } \\ & \text { 3RT1275-6NP36 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	500	160	250	355	500	610	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	3RT1276-6NF36 3RT1276-6NP36	1 1	1 unit 1 unit	41 B

1) When using 3RT12.6-6A... vacuum contactors with IE3/IE4 motors from 8.5 times the starting current, use the versions with solid-state operating mechanism 3RT12.6-6N.
For more information about dimensioning and configuring, see page 3/7.

Other voltages according to page 3/76 on request
For an overview of the 3RT12 vacuum contactors with mountable accessories, see pages $3 / 14$ and $3 / 16$.

The accessories for the 3RT1 vacuum contactors correspond to those for the basic units of the 3RT1 contactors, see page 3/77 onwards.

For spare parts, see page 3/141.

3TF6 vacuum contactors, 3-pole, 335 to 450 kW

AC operation

- For screw fixing
- Main conductors: Busbar connections
- Auxiliary and control conductors: Screw terminals
- With overvoltage protection of the coil (varistor)

Size	Rated data							Auxiliary contacts, lateral		Rated control	SD	Screw terminals	(1)		PS*	PG
	AC-2 and AC-3, t_{u} : Up to $55^{\circ} \mathrm{C}$						$\begin{aligned} & \mathrm{AC}-1, \\ & t_{\mathrm{u}}: 40^{\circ} \mathrm{C} \end{aligned}$			supply voltage U_{S} $50 / 60 \mathrm{~Hz}$ AC						
	Operational current $I_{\text {e }}$ up to	Rating of three-phase motors at 50 Hz and					Operational current I_{e} up to		4			Article No.	Price per PU			
	690 V	230 V	400 V	500 V	690 V	1000 V	690 V									
	A	kW	kW	kW	kW	kW	A	NO	NC	V	d					
AC operation, $50 / 60 \mathrm{~Hz}^{1}$)																
14	630	200	335 ${ }^{\text {) }}$	434	600	--	700	4	4	$\begin{aligned} & 110 \ldots 132 \\ & 200 \ldots 240 \end{aligned}$	$\underset{~ X}{X}$	3TF6844-0CF7 3TF6844-0CM7		1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \\ & \hline \end{aligned}$
						600	700	4	4	$\begin{aligned} & 110 \ldots 132 \\ & 200 \ldots .240 \end{aligned}$	$\begin{aligned} & 20 \\ & X \end{aligned}$	3TF6844-8CF7 3TF6844-8CM7		1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
14	820	260	$450{ }^{3}$	600	800	--	910	4	4	$\begin{aligned} & 110 \ldots 132 \\ & 200 \ldots 240 \end{aligned}$	X	$\begin{aligned} & \text { 3TF6944-0CF7 } \\ & \text { 3TF6944-0CM7 } \end{aligned}$		1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & \mathrm{A1P} \end{aligned}$
						800	910	4	4	$\begin{aligned} & 110 \ldots 132 \\ & 200 \ldots 240 \end{aligned}$	$\begin{aligned} & 20 \\ & X \end{aligned}$	$\begin{aligned} & \text { 3TF6944-8CF7 } \\ & \text { 3TF6944-8CM7 } \end{aligned}$		1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$

1) For use of 3TF6 vacuum contactors in the environment of frequency converters, we recommend ordering a special version:
3TF6...-....-Z A02
3TF68/3TF69 vacuum contactors in their basic version are supplied with integrated overvoltage damping for the main current paths.
The surge suppression circuit is not required for operation in circuits with DC choppers, frequency converters or speed-variable operating mechanisms, for example.
The circuit could be damaged by the voltage peaks and harmonics and thus cause phase-to-phase short circuits. For this reason, the contactors can also be supplied without integrated overvoltage damping. Without additional price.
The article number must be supplemented by "-Z" and the order code "A02".
2) When using 3TF68 vacuum contactors with IE3/IE4 motors from 8.5 times the starting current, please use 3TF69 vacuum contactors. For more information about dimensioning and configuring, see page 3/7.
3) Please inquire about use of 3TF69 vacuum contactors with IE3/IE4 motors.

Accessories and spare parts, see pages 3/139 to 3/142.

Rated control supply voltages, possible on request (change of the 10th and 11th digits of the Article No.)

Delivery time on request

Rated control supply \quad Contactor type | 3TF6844-.C..., |
| :--- |
| 3TF6944-.C.. |
| voltage U_{S} |

Size 14

AC operation

Solenoid coils for $50 / 60 \mathrm{~Hz}$

$110 \ldots 132$ V AC	F7
$200 \ldots 240 \vee ~ A C$	M7
$230 \ldots 277$ V AC	P7
$380 \ldots 460 \vee$ AC	Q7
$500 \ldots 600 \vee$ AC	S7

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

SIRIUS 3RT12 and 3TF6 vacuum contactors IF3/IE4 ready

DC operation =-

and for AC operation subject to strong interference

- Main conductors: Busbar connections
- Auxiliary and control conductors: Screw terminals
- DC solenoid system with 3TC44 reversing contactor for series resistor

1) On this version, a magnetic system is used in the DC economy circuit. A varistor can be retrofitted. A 3TC4417-4A.. reversing contactor is included in the scope of supply of the vacuum contactor.
${ }^{2)}$ For use of 3TF6 vacuum contactors in the environment of frequency converters, we recommend ordering a special version:

3TF6...-...-Z A02

3TF68/3TF69 vacuum contactors in their basic version are supplied with integrated overvoltage damping for the main current paths The surge suppression circuit is not required for operation in circuits with DC choppers, frequency converters or speed-variable operating mechanisms, for example.

The circuit could be damaged by the voltage peaks and harmonics and thus cause phase-to-phase short circuits. For this reason, the contactors can also be supplied without integrated overvoltage damping. Without additional price.
The article number must be supplemented by "-Z" and the order code "A02".
3) When using 3TF68 vacuum contactors with IE3/IE4 motors from 8.5 times the starting current, please use 3TF69 vacuum contactors. For more information about dimensioning and configuring, see page 3/7.
${ }^{4)}$ Please inquire about use of 3TF69 vacuum contactors with IE3/IE4 motors.
5) On this version, a magnetic system with rectifier is used in the DC economy circuit. Varistor integrated. A 3TC4417-.... reversing contactor with preassembled connection cable (approx. 1 m) and plug is included in the scope of supply of the vacuum contactor.

Rated control supply voltages, possible on request (change of the 10th and 11th digits of the Article No.)

Delivery time on request

Rated control supply voltage U_{s}

Contactor type 3TF6833-D.. 3TF6933-D..
Size 14

DC operation

Solenoid coils for DC economy circuit
24 V DC
B4

110 V DC F4
125 V DC
G4
220 V DC M4
230 V DC

Accessories and spare parts, see pages 3/139 to 3/142

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories and spare parts for SIRIUS 3RT12 and 3TF6 vacuum contactors

Selection and ordering data

Accessories

For further accessories for the SIRIUS 3RT12 vacuum contactors, see 3RT1 basic units, page 3/77 onwards.

Auxiliary switches, instantaneous
For lateral mounting

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories and spare parts for SIRIUS 3RT12 and 3TF6 vacuum contactors

Spare parts

PU (UNIT, SET, M)	$=1$
	$=1$ unit
	$=1$
	$=41 \mathrm{BG}$

	For con	tors	Rated control supply voltage $U_{\mathrm{s} \min } \ldots U_{\mathrm{s} \text { max }}$	SD	Screw terminals	(1)	SD	Spring-loaded terminals	$\begin{aligned} & \infty 0 \\ & \square \square \end{aligned}$
	Size	Type	V AC/DC	d	Article No.	Price per PU	d	Article No.	Price per PU
Withdrawable coils									
Standard operating mechanism for AC/DC									
	S10	3RT126	$\begin{aligned} & 23 \ldots 26 \\ & 42 \ldots 48 \\ & 110 \ldots 127 \\ & 200 \ldots 220 \end{aligned}$	$\begin{aligned} & 5 \\ & \times \\ & 2 \\ & 5 \end{aligned}$	3RT1966-5AB31 3RT1966-5AD31 3RT1966-5AF31 3RT1966-5AM31			$\begin{aligned} & \text {-- } \\ & \text {-- } \end{aligned}$	
			$\begin{aligned} & 220 \ldots 240 \\ & 240 \ldots 277 \\ & 380 \ldots 420 \\ & 440 \ldots 480 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & x \\ & 5 \end{aligned}$	3RT1966-5AP31 3RT1966-5AU31 3RT1966-5AV31 3RT1966-5AR31			--	
3RT1975-5A. 31 3RT1975-5A. 32			$\begin{aligned} & 500 \ldots 550 \\ & 575 \ldots 600 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \text { 3RT1966-5AS31 } \\ & \text { 3RT1966-5AT31 } \end{aligned}$			--	
	S12	3RT127	$\begin{aligned} & 23 \ldots 26 \\ & 42 \ldots 48 \\ & 110 \ldots 127 \\ & 200 \ldots 220 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT1975-5AB31 3RT1975-5AD31 3RT1975-5AF31 3RT1975-5AM31		$\begin{aligned} & \hline 5 \\ & x \\ & x \\ & x \\ & x \end{aligned}$	3RT1975-5AB32 3RT1975-5AD32 3RT1975-5AF32 3RT1975-5AM32	
			$\begin{aligned} & 220 \ldots 240 \\ & 240 \ldots 277 \\ & 380 \ldots 420 \\ & 440 \ldots 480 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT1975-5AP31 3RT1975-5AU31 3RT1975-5AV31 3RT1975-5AR31		$\begin{aligned} & 5 \\ & x \\ & x \\ & 5 \end{aligned}$	3RT1975-5AP32 3RT1975-5AU32 3RT1975-5AV32 3RT1975-5AR32	
			$\begin{aligned} & 500 \ldots 550 \\ & 575 \ldots 600 \end{aligned}$	5 5	3RT1975-5AS31 3RT1975-5AT31		$\begin{aligned} & x \\ & x \end{aligned}$	3RT1975-5AS32 3RT1975-5AT32	

Solid-state operating mechanism for AC/DC with 24 V DC control signal input

e.g. for control by PLC

S10	3RT126	$\begin{aligned} & 21 \ldots 27.3 \\ & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT1966-5NB31 3RT1966-5NF31 3RT1966-5NP31		--
S12	3RT127	$\begin{array}{ll} 21 \ldots 27.3 \\ 96 \ldots . & 127 \\ 200 \ldots . & 277 \end{array}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \end{aligned}$	3RT1975-5NB31 3RT1975-5NF31 3RT1975-5NP31	X 5 5	3RT1975-5NB32 3RT1975-5NF32 3RT1975-5NP32

	For contactors		Version	SD	Article No.	Price		PS*	PG
	Size	Type		d					
Solenoid coils									
	14	$\begin{aligned} & 3 T F 68 \\ & 3 T F 69 \end{aligned}$	AC operation ${ }^{1)}$ The solenoid coils are fitted as standard with varistors against overvoltage; the coil is supplied with switch-on electronics.		3TY7683-0C.. 3TY7693-0C.				
	14	$\begin{aligned} & 3 T F 68 \\ & 3 \text { TF69 } \end{aligned}$	DC operation ${ }^{11}$. DC economy circuit The solenoid coils are supplied without reversing contactor.		3TY7683-0D.. 3TY7693-0D..				
3TY76.3-0...									
Vacuum interrupters									
	S10	3RT1264 3RT1265 3RT1266	Set with three vacuum interrupters with fixing parts	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT1964-6V 3RT1965-6V 3RT1966-6V		1 1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	41 B 41 B 41 B
	S12	$\begin{aligned} & \text { 3RT1275 } \\ & \text { 3RT1276 } \end{aligned}$		$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1975-6V } \\ & \text { 3RT1976-6V } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	41 B 41 B
3RT197.-6V									
	14	$\begin{aligned} & \text { 3TF68 } \\ & \text { 3TF69 } \end{aligned}$	Set with three vacuum interrupters with components	5 15	3TY7680-0B 3TY7690-0B		1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	41B 41 B
			Note: In order to ensure reliable operation of the contactors, only original replacement interrupters should be used						

[^27]
Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

Accessories and spare parts for SIRIUS 3RT12 and 3TF6 vacuum contactors

Overview

Standards

IEC 60947-1, IEC 60947-4-1, IEC 60947-5-1

Version

The 3TG10 power relays/miniature contactors are available with screw terminals or $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ flat connectors. The versions with screw terminals are suitable for use in any climate and finger-safe according to IEC 60529.
The 3TG10 miniature contactors are characterized by their width of just 36 mm .

Surge suppression

The 3TG10 power relays/miniature contactors have an integrated protective circuit against opening surges.

Application

Because they are hum-free they are suitable for use in household appliances and distribution boards in office and residential areas.
They can also be used for applications where there is little space, such as air conditioners, heating systems, pumps and fans, i.e. for simple electrical controls.

Technical specifications

More information		
Technical specifications, see https://support.industry.siemens.com/cs/ww/en/ps/16186/td	Reference Manual for switching devices, see https://support.industry.siemens.com/cs/ww/en/view/35554359 FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16186/faq	
Type		3TG10
General data		
Dimensions (W x H x D)		$36 \times 56 \times 56$
Endurance		
- Mechanical - Electrical - AC-1 at I_{e} - AC-3 at $I_{\text {e }}$ Operating cycles Operating cycles Operating cycles		3 million 0.1 million 0.4 million
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)	V	400
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	4
Protective separation Between the coil and the contacts acc. to IEC 60947-1, Appendix N	V	Up to 300
Permissible ambient temperature - During operation ${ }^{1)}$ - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+55 \\ & -50 \ldots+80 \end{aligned}$
Degree of protection IP on the front acc. to IEC 60529		IP00
Short-circuit protection		
Fuse links, operational class gG: LV HRC, type 3NA; DIAZED, type 5SB; NEOZED, type 5SE according to IEC 60947-4-1		
- Type of coordination "1" - Type of coordination "2"	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 25 \\ & 10 \end{aligned}$
Miniature circuit breakers, C characteristic	A	10
Control		
Solenoid coil operating range		$0.85 \ldots 1.1 \times U_{S}$
Power consumption of the solenoid coils (for cold coil and $1.0 \times U_{S}$) - AC operation, 45 ... 450 Hz - P.f. - DC operation	VA W	$\begin{aligned} & 4.4 \\ & 0.9 \text { (hum-free) } \\ & 4 \end{aligned}$
Rated data of the main contacts		
Load rating with AC Utilization category AC-1 - Rated operational current I_{e} up to 400 V at $55^{\circ} \mathrm{C}^{1)}$ - Rated power $U_{\text {e }}$ for AC loads with p.f. $=1,230 / 220 \mathrm{~V}$ - For screw terminals - For flat connectors	A kW kW mm^{2}	20 for screw terminals, 16 for flat connectors $\begin{aligned} & 7.5(13 \text { at } 400 \mathrm{~V}) \\ & 6(10 \text { at } 400 \mathrm{~V}) \\ & 2.5 \end{aligned}$

[^28] $I>10 \mathrm{~A}$ in the fourth current path: Permissible ambient temperature $40^{\circ} \mathrm{C}$.

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

3TG10 power relays/miniature contactors

Type					3TG10
Rated data of the main contacts (continued)					
Load rating with AC					
Utilization categories AC-2 and AC-3					
- Operational current for $\mathrm{AC}-3$ at $U_{\mathrm{e}} \leq 400 \mathrm{~V}$ rated value				A	8.4
- Rated power for slipring or squirrel-cage motors with 50 and 60 Hz and at $U_{e} \leq 400 \mathrm{~V}$				kW	4
Utilization category AC-5a (permissible nominal impedance: $\geq 0.5 \Omega$)					
Switching of gas discharge lamps					
Per main current path at $230 \mathrm{~V}, 50 \mathrm{~Hz}$					
Rated power/rated operational current per lamp					
- Uncompensated	$\begin{aligned} & 18 \mathrm{~W} \\ & 36 \mathrm{~W} \\ & 58 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0.37 \mathrm{~A} \\ & 0.43 \mathrm{~A} \\ & 0.67 \mathrm{~A} \end{aligned}$		Unit(s) Unit(s) Unit(s)	$\begin{aligned} & 43 \\ & 37 \\ & 24 \end{aligned}$
- DUO switching	$\begin{aligned} & 18 \mathrm{~W} \\ & 36 \mathrm{~W} \\ & 58 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 2 \times 0.11 \mathrm{~A} \\ & 2 \times 0.21 \mathrm{~A} \\ & 2 \times 0.32 \mathrm{~A} \end{aligned}$		Unit(s) Unit(s) Unit(s)	$\begin{aligned} & 2 \times 81 \\ & 2 \times 42 \\ & 2 \times 28 \end{aligned}$
Switching of gas discharge lamps with compensation or ECG					
Per main current path $230 \mathrm{~V}, 50 \mathrm{~Hz}$					
Connection	Rated power per lamp	Capacitor capacitance	Rated operational current per lamp		
- Shunt compensation	$\begin{aligned} & \hline \text { L18 W } \\ & \text { L36 W } \\ & \text { L58 W } \end{aligned}$	$\begin{aligned} & 4.5 \mu \mathrm{~F} \\ & 4.5 \mu \mathrm{~F} \\ & 7 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.11 \mathrm{~A} \\ & 0.21 \mathrm{~A} \\ & 0.32 \mathrm{~A} \end{aligned}$	Unit(s) Unit(s) Unit(s)	$\begin{aligned} & 15 \\ & 15 \\ & 10 \end{aligned}$
- With ECG (single lamp)	L18 W L36 W L58 W	$\begin{aligned} & 6.8 \mu \mathrm{~F} \\ & 6.8 \mu \mathrm{~F} \\ & 10 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.10 \mathrm{~A} \\ & 0.18 \mathrm{~A} \\ & 0.27 \mathrm{~A} \end{aligned}$	Unit(s) Unit(s) Unit(s)	$\begin{aligned} & 39 \\ & 39 \\ & 26 \end{aligned}$
- With ECG (two lamps)	L18 W L36 W L58 W	$\begin{aligned} & 10 \mu \mathrm{~F} \\ & 10 \mu \mathrm{~F} \\ & 22 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.18 \mathrm{~A} \\ & 0.35 \mathrm{~A} \\ & 0.52 \mathrm{~A} \end{aligned}$	Unit(s) Unit(s) Unit(s)	$\begin{aligned} & 2 \times 26 \\ & 2 \times 26 \\ & 2 \times 12 \end{aligned}$
Utilization category AC-5b, switching incandescent lamps Per main current path at $230 \mathrm{~V}, 50 \mathrm{~Hz}$				kW	1.6
Load rating with DC					
Utilization category DC-1, ($L / R \leq 15 \mathrm{~ms}$)					
- Rated operational curre - 1 conducting path	$\text { ts } I_{\mathrm{e}}$		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} / 240 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \\ & 2 \\ & 0.8 \end{aligned}$
- 2 conducting paths in	eries		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} / 240 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 6 \\ & 1.6 \end{aligned}$
- 3 conducting paths in	eries		$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} / 240 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 16 \\ & 6 \end{aligned}$

Utilization category DC-3 and DC-5,
shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

- Rated operational currents I_{e}

-1 conducting path	Up to 24 V	A	10
60 V	A	0.5	
	110 V	A	0.15
- 2 conducting paths in series	$220 \mathrm{~V} / 240 \mathrm{~V}$	A	0
	Up to 24 V	A	16
60 V	A	5	
	110 V	A	0.35
-3 conducting paths in series	$220 \mathrm{~V} / 240 \mathrm{~V}$	A	0
	Up to 24 V	A	16
60 V	A	16	
	110 V	A	10
	$220 \mathrm{~V} / 240 \mathrm{~V}$	A	1.75

Switching devices - Contactors and contactor assemblies - for switching motors Power contactors for switching motors

3TG10 power relays/miniature contactors

Selection and ordering data

AC operation \sim or $D C$ operation $=\mathbf{=}$

For screw fixing and snap-on mounting onto TH 35 standard mounting rail

Hum-free \cdot with $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ flat connectors

1) The rated operational currents apply to each pole.

Accessories

	Version	Max. rated operational currents $I_{\mathrm{e}} / \mathrm{AC}-1$ (at $55^{\circ} \mathrm{C}$) of the contactors	Max. conductor cross-sections	SD	Screw terminals	\bigoplus	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
		A	mm^{2}	d	Article No.	Price per PU			
Links for paralleling (insulated star jumpers) ${ }^{\text {² }}$									
3RT1916-4BB31	3-pole								
	- Without connecting terminal		--	-	3RT1916-4BA31		1	1 unit	41B
	- With connecting terminal	40	25	\checkmark	3RT1916-4BB31		1	1 unit	41B
	4-pole								
	- With connecting terminal	40	25	2	3RT1916-4BB41		1	1 unit	41B

[^29]
Overview

More information	Conversion tool for article numbers, see
Homepage, see www.siemens.com/sirius	www.siemens.com/sirius/conversion-tool
Industry Mall, see www.siemens.com/product?3RA23_3RT1	TIA Selection Tool Cloud (TST Cloud), see
	https://www.siemens.com/tstcloud/?node=LoadFeeder

The 3RA23 reversing contactor assemblies in sizes S00 to S3 can be ordered as follows:

- Fully wired and tested, with mechanical and electrical interlock, see page 3/154 onwards.
- For all individual parts for customer assembly, see from page 3/77 onwards.
The 3RA23 reversing contactor assemblies have screw or spring-loaded terminals (main and control circuits) and are suitable for screw fixing and snap-on mounting onto TH 35 standard mounting rails.

Complete 3RA23 reversing contactor assemblies

The fully wired reversing contactor assemblies are suitable for use in any climate.
They are finger-safe according to IEC 60529.
The 3RA23 reversing contactor assemblies of size S00 to S3 each consist of two contactors with the same power, with one NC contact (SOO) or one NO contact and one NC contact (SO to S 3) in the basic unit. The contactors are mechanically and electrically interlocked (NC contact interlock).
3RU2 overload relays (see page 7/98 onwards) or 3RB3 overload relays (see page 7/111 onwards) for contactor mounting or stand-alone installation, SIMOCODE pro 3UF7 motor management and control devices (page 10/16 onwards) or 3RN2 thermistor motor protection relays (page 10/143 onwards) can be used for motor protection.
3RA23 reversing contactor assemblies with voltage tap-off
The reversing contactor assemblies with voltage tap-off (see pages $3 / 154$ to $3 / 157$) are required for mounting the function modules for connection to the controller via the IO-Link or AS-Interface communication systems. The 3RA27 function modules must be ordered separately; see page 3/108.
For more information on IO-Link and AS-Interface, see "Industrial communication", from page 2/1 onwards.

Switching devices - Contactors and contactor assemblies - for switching motors Reversing contactor assemblies

SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW

Sizes S00 to S3

Rated data AC-2 and AC-3 at 50 Hz 400 VAC		Size	Type		
Rating kW	Operational current I_{e} A		Contactor (See page 3/55 onwards)	Assembly kit (See page 3/111)	Fully wired and tested reversing contactor assemblies
			(17) Screw terminals		
3	7	S00	3RT2015-1... 2	3RA2913-2AA1	3RA2315-8XB30-1...
4	9		3RT2016-1... 2	3RA2913-2AA1	3RA2316-8XB30-1...
5.5	12		3RT2017-1... 2	3RA2913-2AA1	3RA2317-8XB30-1...
7.5	16		3RT2018-1... 2	3RA2913-2AA1	3RA2318-8XB30-1...
5.5	12	SO	3RT2024-1... 0	3RA2923-2AA1	3RA2324-8XB30-1...
7.5	16		3RT2025-1... 0	3RA2923-2AA1	3RA2325-8XB30-1...
11	25		3RT2026-1... 0	3RA2923-2AA1	3RA2326-8XB30-1...
15	32		3RT2027-1... 0	3RA2923-2AA1	3RA2327-8XB30-1...
18.5	38		3RT2028-1... 0	3RA2923-2AA1	3RA2328-8XB30-1...
18.5	40	S2	3RT2035-1... 0	3RA2933-2AA1	3RA2335-8XB30-1...
22	55		3RT2036-1... 0	3RA2933-2AA1	3RA2336-8XB30-1...
30	65		3RT2037-1... 0	3RA2933-2AA1	3RA2337-8XB30-1...
37	80		3RT2038-1... 0	3RA2933-2AA1	3RA2338-8XB30-1...
37	80	S3	3RT2045-1... 0	3RA2943-2AA1	3RA2345-8XB30-1...
45	90		3RT2046-1... 0	3RA2943-2AA1	3RA2346-8XB30-1...
55	110		3RT2047-1... 0	3RA2943-2AA1	3RA2347-8XB30-1...
			OO Spring-loaded term	inals	
3	7	S00	3RT2015-2... 2	3RA2913-2AA2	3RA2315-8XB30-2...
4	9		3RT2016-2... 2	3RA2913-2AA2	3RA2316-8XB30-2...
5.5	12		3RT2017-2... 2	3RA2913-2AA2	3RA2317-8XB30-2...
7.5	16		3RT2018-2... 2	3RA2913-2AA2	3RA2318-8XB30-2...
5.5	12	SO	3RT2024-2... 0	3RA2923-2AA2	3RA2324-8XB30-2...
7.5	16		3RT2025-2... 0	3RA2923-2AA2	3RA2325-8XB30-2...
11	25		3RT2026-2... 0	3RA2923-2AA2	3RA2326-8XB30-2...
15	32		3RT2027-2... 0	3RA2923-2AA2	3RA2327-8XB30-2...
18.5	38		3RT2028-2... 0	3RA2923-2AA2	3RA2328-8XB30-2...

Note:
The 3RA2934-2B mechanical interlock for sizes S2 and S3 must be ordered separately, see page 3/115.

Article No. scheme

Note:
The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

Switching devices - Contactors and contactor assemblies - for switching motors Reversing contactor assemblies

SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW
Fully wired and tested reversing contactor assemblies • Size S00 • Up to 7.5 kW
The figure shows the version with screw terminals

Mountable accessories (optional)		
To be ordered separately	Type	Page
(6) Auxiliary switch, front ${ }^{1)}$	$3 R H 2911$	$3 / 95 \ldots 3 / 97$
(7) Auxiliary switch, lateral	3RH2921	$3 / 99$
(8)	Surge suppressors	3RT2916

1) Auxiliary switch according to EN 50005 must be used.
2) The parts (3) and (4) can only be ordered together as 3RA2912-2H mechanical connectors.
3) 3RT201. contactors with one NC contact in the basic unit are required for the electrical interlock. An additional NO contact is required for momentary-contact operation.

Complete reversing contactor assembly				
Individual parts	Type Page Q11 Q12			
(1)(2) Contactors, 3 kW 3RT2015 3RT2015	$3 / 55,3 / 60,3 / 61$			
(1)(2)	Contactors, 4 kW	3RT2016	3RT2016	$3 / 55,3 / 60,3 / 61$
(1)(2)	Contactors, 5.5 kW	3RT2017	3RT2017	$3 / 55,3 / 60,3 / 61$
(1)(2)	Contactors, 7.5 kW	3RT2018	3RT2018	$3 / 55,3 / 60,3 / 61$
(3)...(5)Assembly kit comprising:	3RA2913-2AA1	$3 / 111$		

(3) Mechanical interlock ${ }^{2}$)
(4) Two connecting clips for two contactors ${ }^{2)}$
(5) Wiring modules on the top and bottom for connecting the main current paths, electrical interlock included ${ }^{3}$) interruptible (NC contact interlock)

For complete reversing contactor assemblies, see page 3/154.

Switching devices - Contactors and contactor assemblies - for switching motors Reversing contactor assemblies

SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW

Fully wired and tested reversing contactor assemblies • Size SO • Up to 18.5 kW

The figure shows the version with screw terminals

For complete reversing contactor assemblies, see page 3/155.

Complete reversing contactor assembly				
Individual parts		Type		Page
		Q11	Q12	
(1)(2)	Contactors, 5.5 kW	3RT2024	3RT2024	3/56, 3/64, 3/65
(1)(2)	Contactors, 7.5 kW	3RT2025	3RT2025	3/56, 3/64, 3/65
(1)(2)	Contactors, 11 kW	3RT2026	3RT2026	3/56, 3/64, 3/65
(1)(2)	Contactors, 15 kW	3RT2027	3 RT 2027	3/56, 3/64, 3/65
(1)(2)	Contactors, 18.5 kW	3RT2028	3RT2028	3/56, 3/64, 3/65
(3) ... (5)	Assembly kit comprising:	3RA2923-2AA1		3/111

(3) Mechanical interlock ${ }^{1)}$
(4) Two connecting clips for two contactors ${ }^{1)}$
(5) Wiring modules on the top and bottom for connecting the main current paths, electrica interlock included (NC contact interlock)

1) The parts (3) and (4) can only be ordered together as 3RA2922-2H mechanical connectors

Switching devices - Contactors and contactor assemblies - for switching motors

 Reversing contactor assembliesSIRIUS 3RA23 reversing contactor assemblies, up to 55 kW
Fully wired and tested reversing contactor assemblies • Size S2 • Up to 37 kW
The figure shows the version with screw terminals

Mountable accessories (optional)
To be ordered separately
(6) Auxiliary switch, front
(7) Auxiliary switch, lateral
(8) Surge suppressors
(9) Function module for connection to the control system

Complete reversing contactor assembly				
Individual parts		Type		Page
		Q11	Q12	
(1)(2)	Contactors, 18.5 kW	3RT2035	3RT2035	3/58, 3/69
(1)(2)	Contactors, 22 kW	3 RT2036	3 RT2036	3/58, 3/69
(1)(2)	Contactors, 30 kW	3 RT2037	3 RT2037	3/58, 3/69
(1)(2)	Contactors, 37 kW	3RT2038	3RT2038	3/58, 3/69
(3)(4)	Assembly kit	3RA2933-2AA1		3/111

(3) Two connectors for two contactors
(4) Wiring modules on the top and bottom for connecting the main and auxiliary circuits, electrical interlock included (NC contact interlock)
(5)
(must be ordered separately)
3RA2934-2B
3/115

For complete reversing contactor assemblies, see page 3/156.

Switching devices - Contactors and contactor assemblies - for switching motors Reversing contactor assemblies

SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW

Fully wired and tested reversing contactor assemblies • Size S3 • Up to 55 kW

The figure shows the version with screw terminals

For complete reversing contactor assemblies, see page 3/157.

Benefits

Using wiring kits for reversing contactor assemblies has the following advantages:

- Notable reduction of wiring in the control circuit
- Integrated mechanical interlock for sizes SOO and SO
- Prevention of wiring errors in the main circuit

Connecting combs for screw terminals also result in:

- Prevention of wiring errors in the control circuit
- Reduction of testing costs
- Ready-jumpered actuation of the auxiliary switches and the frame (A2)
- Integrated electrical interlocking

Accessories

Selecting the auxiliary switches

The following points should be noted:
Size S00

- For maintained-contact operation:

Use contactors with an NC contact in the basic unit for the electrical interlock.

- For momentary-contact operation:

Use contactors with an NC contact in the basic unit for the electrical interlock; in addition, an auxiliary switch with at least one NO contact for self-locking is required per contactor.
Sizes S0 to S3

- For maintained-contact operation:

The contactors have two integrated auxiliary contacts (1 NO +
1 NC); the NC contact can be used for electrical interlocking.

- For momentary-contact operation:

Electrical interlock as for maintained-contact operation; the NO contact in the basic unit can be used for the selflocking.

Surge suppression

Sizes S00 to S3
All reversing contactor assemblies can be fitted with RC elements or varistors for damping opening surges in the coil.
As with the individual contactors, the surge suppressors can either be plugged onto the top of the contactors (SOO) or be plugged into the front of the contactors (S0 to S3).

Technical specifications

More information	
Technical specifications, see https://support.industry.siemens.com/cs/ww/en/ps/16146/td	System Manual for modular system, see https://support.industry.siemens.com/cs/ww/en/view/60311318
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16146/faq	Equipment Manual, see https://support.industry.siemens.com/cs/ww/en/view/60306557
	Application Manual for controls with IE3/IE4 motors, see https://support.industry.siemens.com/cs/ww/en/view/94770820

The technical specifications are the same as for the individual contactors (see page 3/23 onwards).

Switching devices - Contactors and contactor assemblies - for switching motors Reversing contactor assemblies

SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW IE3/IE4 ready
Selection and ordering data
Fully wired and tested reversing contactor assemblies ${ }^{1)}$. Size S00 • Up to 7.5 kW AC operation ~ or DC operation $=\mathbf{=}$

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PG	$=41 \mathrm{~B}$

no unassigned auxiliary contacts. When used with a voltage tap-off and function module, the auxiliary contacts are unassigned.

Representation of the complete reversing contactor assemblies with optionally mountable accessories, see page 3/149.

IF3/IE4 ready SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW
Fully wired and tested reversing contactor assemblies • Size SO • Up to 18.5 kW AC operation \sim or DC operation $==$

Representation of the complete reversing contactor assemblies with optionally mountable accessories, see page 3/150.

Switching devices - Contactors and contactor assemblies - for switching motors Reversing contactor assemblies

SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW IE3/IE4 ready

Fully wired and tested reversing contactor assemblies • Size S2 • Up to 37 kW $A C$ operation \sim or AC/DC operation \sim

| PU (UNIT, SET, M) | $=1$ |
| ---: | :--- | ---: | :--- |
| PS* | $=1$ unit |
| PG | $=41 \mathrm{~B}$ |

3RA233.-8XB30-1A. 2

Rated data AC-2 and AC-3				Rated control supply voltage U_{S}	SD	Screw terminals	(1)	SD	Spring-loaded	OO
Operational	Ratings of three-phase motors at 50 Hz and 60 Hz								terminals	\square
current I_{e} up to $400 \mathrm{~V}$	$230 \mathrm{~V}$	400 V	690 V			Article No.	Price per PU		Article No.	Price per PU
A	kW	kW	kW	V	d			d		
AC operation, $50 / 60 \mathrm{~Hz}$										
40	11	18.5	22	110 AC	2	3RA2335-8XB30-1AG2			--	
				230 AC	2	3RA2335-8XB30-1AL2			--	
50	15	22	22	110 AC	5	3RA2336-8XB30-1AG2			--	
				230 AC	2	3RA2336-8XB30-1AL2			--	
65	18.5	30	37	110 AC	5	3RA2337-8XB30-1AG2			--	
				230 AC	2	3RA2337-8XB30-1AL2			--	
80	22	37	45	110 AC	5	3RA2338-8XB30-1AG2			--	
				230 AC	2	3RA2338-8XB30-1AL2			--	

AC/DC operation
With integrated coil circuit
(varistor integrated in electronics at the factory)

| 40 | 11 | $\mathbf{1 8 . 5}$ | 22 | $20 \ldots 33$ AC/DC | 2 | 3RA2335-8XB30-1NB3 | $-\mathbf{-}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 50 | 15 | $\mathbf{2 2}$ | 22 | $20 \ldots 33$ AC/DC | 2 | 3RA2336-8XB30-1NB3 | -- | - |
| 65 | 18.5 | $\mathbf{3 0}$ | 37 | $20 \ldots 33$ AC/DC | 2 | 3RA2337-8XB30-1NB3 | - | |
| 80 | 22 | $\mathbf{3 7}$ | 45 | $20 \ldots 33$ AC/DC | 2 | 3RA2338-8XB30-1NB3 | $-\mathbf{-}$ | |

With voltage tap-off

40	11	$\mathbf{1 8 . 5}$	22	$20 \ldots 33$ AC/DC	5	3RA2335-8XE30-1NB3	$-\mathbf{- -}$	
50	15	$\mathbf{2 2}$	22	$20 \ldots 33$ AC/DC	5	3RA2336-8XE30-1NB3	$-\mathbf{-}$	
65	18.5	$\mathbf{3 0}$	37	$20 \ldots 33$ AC/DC	5	3RA2337-8XE30-1NB3	$-\mathbf{-}$	
80	22	$\mathbf{3 7}$	45	$20 \ldots 33$ AC/DC	5	3RA2338-8XE30-1NB3	--	

Representation of the complete reversing contactor assemblies with optionally mountable accessories, see page 3/151.

Switching devices - Contactors and contactor assemblies - for switching motors

Reversing contactor assemblies
IF3/IE4 ready SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW
Fully wired and tested reversing contactor assemblies • Size S3 • Up to 55 kW $A C$ operation \sim or AC/DC operation \sim

3RA234.-8XB30-1A. 2

Rated data AC-2 and AC-3				Rated control supply voitage $U_{S}{ }^{1)}$	SD	Screw terminals	(1)	SD	Spring-loaded terminals	\bigcirc
Operational current I_{e} up to	Ratings of three-phase motors at 50 Hz and 60 Hz									
400 V	230 V	400 V	690 V			Article	Price per PU		Article No.	Price per PU
A	kW	kW	kW	V	d			d		
AC operation, 50/60 Hz										
80	22	37	55	110 AC	X	3RA2345-8XB30-1AG2			--	
				230 AC	X	3RA2345-8XB30-1AL2			--	
95	22	45	75	110 AC	X	3RA2346-8XB30-1AG2			--	
				230 AC	X	3RA2346-8XB30-1AL2			--	
110	30	55	75	110 AC	X	3RA2347-8XB30-1AG2			--	
				230 AC	X	3RA2347-8XB30-1AL2			--	

AC/DC operation
With integrated coil circuit
(varistor integrated in electronics at the factory)

80	22	37	55	$20 . .33$ AC/DC	5	3RA2345-8XB30-1NB3	--
95	22	45	75	$20 . .33$ AC/DC	X	3RA2346-8XB30-1NB3	--
110	30	55	75	$20 . .33$ AC/DC	X	3RA2347-8XB30-1NB3	--
With voltage tap-off ${ }^{1)}$							
80	22	37	55	20... 33 AC/DC	X	3RA2345-8XE30-1NB3	--
95	22	45	75	$20 . . .33$ AC/DC	X	3RA2346-8XE30-1NB3	--
110	30	55	75	$20 . .33$ AC/DC	X	3RA2347-8XE30-1NB3	--

1) The associated module connectors 3RA2711-0EE17 for the 3RA271. function modules must be ordered separately, see page 3/109.

3RA234.-8XE30-1NB3

Representation of the complete reversing contactor assemblies with optionally mountable accessories, see page 3/152.

Switching devices - Contactors and contactor assemblies - for switching motors Reversing contactor assemblies

Reversing contactor assemblies consisting of SIRIUS 3RT1 contactors, up to 250 kW

Overview

The individual parts for the reversing contactor assemblies for customer assembly must be ordered separately.

- 3RT contactors (see page 3/72 onwards): The operating times of the individual 3RT10 contactors are rated in such a way that no overlapping of the contact making and the arcing time between two contactors can occur on reversing, provided they are interlocked by way of their auxiliary switches (NC contact interlock) and the mechanical interlock. For assemblies with AC operation and $50 / 60 \mathrm{~Hz}$, a dead interval of 50 ms must be provided when used with voltages over 500 V ; a dead interval of 30 ms is recommended for use with voltages up to and including 400 V . These dead times do not apply to assemblies with DC operation.
The operating times of the individual contactors are not affected by the mechanical interlock.
- Mechanical interlock (see page 3/115)
- Wiring kits consisting of link rails (see page 3/111)
- Base plate (see page 3/120)

Additional components

- For momentary-contact operation: auxiliary switch (NO contact) for self-locking
- 3RB2 overload relays (see page 7/123 onwards), SIMOCODE pro 3UF7 motor management and control devices (page 10/16 onwards) or 3RN2 thermistor motor protection relays (page 10/143 onwards) can be used for overload protection.

More information
Homepage, see www.siemens.com/sirius
Industry Mall, see www.siemens.com/product?3RA23_3RT1

Switching devices - Contactors and contactor assemblies - for switching motors

 Reversing contactor assembliesReversing contactor assemblies consisting of SIRIUS 3RT1 contactors, up to 250 kW
Reversing contactor assemblies for customer assembly • Size S6 • Up to 90 kW

Mountable accessories (optional)
To be ordered separately
(7) Auxiliary switch, front
(8) Auxiliary switch, lateral

3RH1921
3RH1921

Reversing contactor assembly for customer assembly Individual parts
(1)(2)
(1) (2)

Contactors, 75 kW
Contactors, 90 kW
Assembly kit
consisting of:
Wiring modules on the top and bottom for contactors without box terminals for connecting the main and auxiliary circuits, electrical interlock included (NC contact interlock)
(4) Two connectors for two contactors
(5) Mechanical interlock (must be ordered separately)
(6) Base plate for reversing contactor assemblies

Type	
Q11	Q12

3RT1054 3RT1054 3/72 ... 3/74
3RT1055 3RT1055 3/72 ... 3/74
3RT1056 3RT1056 3/72 ... 3/74

3RA1953-2A 3/111

3RA1932-2D
3/115
3RA1954-2A
3RA1952-2A
3/120

Switching devices - Contactors and contactor assemblies - for switching motors Reversing contactor assemblies

Reversing contactor assemblies consisting of SIRIUS 3RT1 contactors, up to 250 kW

Reversing contactor assemblies for customer assembly • Size S10 • Up to 160 kW

Mountable accessories (optional)			Reversing contactor assembly for customer assembly				
To be ordered separately	Type	Page	Individual parts		Type		Page
					Q11	Q12	
(6) Auxiliary switch, front	3RH1921	$3 / 98$	(1)(2)	Contactors, 110 kW	3RT1.64	3RT1.64	$\begin{aligned} & 3 / 72 \ldots 3 / 74, \\ & 3 / 136 \end{aligned}$
(7) Auxiliary switch, lateral	3RH1921	3/100	(1) (2)	Contactors, 132 kW	3RT1.65	3RT1.65	$\begin{aligned} & 3 / 72 \ldots 3 / 74, \\ & 3 / 136 \end{aligned}$
			(1) 2	Contactors, 160 kW	3RT1.66	3RT1.66	$\begin{aligned} & 3 / 72 \ldots 3 / 74, \\ & 3 / 136 \end{aligned}$
			(3)	Assembly kit consisting of: Wiring modules on the top and bottom $\frac{\text { for contactors without box terminals }}{\text { for connecting the main and auxiliary }}$ circuits, electrical interlock included (NC contact interlock)	3RA1963		3/111
			(4)	Mechanical interlock (must be ordered separately)	3RA1954		3/115
			(5)	Base plate for reversing contactor	3RA 1962		3/120

Switching devices - Contactors and contactor assemblies - for switching motors

 Reversing contactor assembliesReversing contactor assemblies consisting of SIRIUS 3RT1 contactors, up to 250 kW
Reversing contactor assemblies for customer assembly • Size S12 • Up to 250 kW

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW

Overview

More information

Homepage, see www.siemens.com/sirius
Industry Mall, see www.siemens.com/product?3RA24_3RT

The 3RA24 contactor assemblies for star-delta (wye-delta) starting in sizes S00 to S3 can be ordered as follows:

- Fully wired and tested, with electrical and mechanical interlock, see page 3/171 onwards.
- For all individual parts for customer assembly, see from page 3/77 onwards.

The 3RA24 contactor assemblies for star-delta (wye-delta) starting have screw or spring-loaded terminals and are suitable for screw fixing and snap-on mounting onto TH 35 standard mounting rails.
A base plate is also available for the size S 2 and S 3 assemblies.
A dead interval of 50 ms on reversing is already integrated in the 3RA28 function module for star-delta (wye-delta) starting.
With the fully wired and tested 3RA24 contactor assemblies for star-delta (wye-delta) starting, the auxiliary contacts included in the basic units are unassigned.
The 3RA24 contactor assemblies for star-delta (wye-delta) starting are designed for standard applications.

Note:

Contactor assemblies for star-delta (wye-delta) starting in special applications such as very heavy starting ${ }^{11}$) or star-delta (wye-delta) starting of special motors must be customized Help with designing such special applications is available from our Technical Support,
www.siemens.com/support-request.

Conversion tool for article numbers, see
www.siemens.com/sirius/conversion-tool
TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=LoadFeeder

Surge suppression

Surge suppression (varistor) is included in the 3RA28 function modules for star-delta (wye-delta) starting.

Motor protection

3RU2 overload relays (see page 7/98 onwards) or 3RB3 overload relays (see page $7 / 111$ onwards) for contactor mounting or stand-alone installation, SIMOCODE pro 3UF7 motor management and control devices (page 10/16 onwards) or 3RN2 thermistor motor protection relays (page 10/143 onwards) can be used for motor protection.
The overload relay can either be mounted onto the line contactor or fitted separately. It must be set to 0.58 times the rated motor current.

SIRIUS 3RA28 function module for star-delta (wye-delta) starting

The 3RA2816-0EW20 star-delta (wye-delta) function module (see page 3/107) replaces the complete wiring in the control circuit and can be used in the voltage range from 24 to $240 \mathrm{~V} \mathrm{AC/DC}$. It is snapped onto the front of the contactor assembly for star-delta (wye-delta) starting size S00, S0, S2 or S3.

One function module comprises a complete module kit:

- Basic module with integrated control logic and time setting
- Two coupling modules with corresponding connecting cables

The scope of supply thus comprises a complete module kit for one contactor assembly for star-delta (wye-delta) starting in size S00, S0, S2 or S3, regardless of the connection method.
Data of the control circuit:

- Wide voltage range 24 to 240 V AC/DC
- Time setting range 0.5 to 60 s (3 selectable settings)
- Dead interval of 50 ms , non-adjustable

[^30]
Complete units

Note:
The selection of contactor types refers to fused designs.

Rated data at 50 Hz 400 V AC			Size	Type		
Rating P kW	Operational current I_{e} A	Motor current A		Line/delta contactor	Star contactor	Fully wired and tested contactor assemblies for star-delta (wye-delta) starting
kW				Screw terminals		
5.5	12	9.5 ... 13.8	S00-S00-S00	3RT2015-1....	3RT2015-1....	3RA2415-8XF31-1...
7.5	16	12.1... 17		3RT2017-1....	3RT2015-1....	3RA2416-8XF31-1...
11	25	19... 25		3RT2018-1....	3RT2016-1....	3RA2417-8XF31-1...
11	25	$19 . .25$	S0-S0-S0	3RT2024-1... 0	3RT2024-1... 0	3RA2423-8XF32-1...
15	32	24.1... 34		3RT2026-1... 0	3RT2024-1... 0	3RA2425-8XF32-1...
18.5	40	34.5 ... 40		3RT2026-1... 0	3RT2024-1... 0	3RA2425-8XF32-1...
22	50	$31 . . .43$		3RT2027-1... 0	3RT2026-1... 0	3RA2426-8XF32-1...
22/30	50	$31 . . .43$	S2-S2-S0	3RT2035-1... 0	3RT2026-1... 0	3RA2434-8XF32-1...
37	80	62.1 ... 77.8		3RT2035-1... 0	3RT2027-1... 0	3RA2435-8XF32-1...
45	86	$69 . . .86$		3RT2036-1... 0	3RT2028-1... 0	3RA2436-8XF32-1...
55	115	77.6 ... 108.6	S2-S2-S2	3RT2037-1... 0	3RT2035-1...0	3RA2437-8XF32-1...
55	115	77.6 ... 108.6	S3-S3-S2	3RT2045-1... 0	3RT2035-1... 0	3RA2444-8XF32-1...
75	150	120.7... 150		3RT2045-1... 0	3RT2036-1... 0	3RA2445-8XF32-1...
90	160	86 ... 160		3RT2046-1... 0	3RT2037-1... 0	3RA2446-8XF32-1...
				OO Spring-loaded terminals		
5.5	12	9.5... 13.8	S00-S00-S00	3RT2015-2....	3RT2015-2...	3RA2415-8XF31-2...
7.5	16	12.1... 17		3RT2017-2....	3RT2015-2....	3RA2416-8XF31-2...
11	25	19... 25		3RT2018-2....	3RT2016-2....	3RA2417-8XF31-2...
11	25	$19 . .25$	S0-S0-S0	3RT2024-2... 0	3RT2024-2... 0	3RA2423-8XF32-2...
15	32	24.1... 34		3RT2026-2... 0	3RT2024-2... 0	3RA2425-8XF32-2...
18.5	40	34.5 ... 40		3RT2026-2... 0	3RT2024-2... 0	3RA2425-8XF32-2...
22	50	$31 . . .43$		3RT2027-2... 0	3RT2026-2... 0	3RA2426-8XF32-2...

Article No. scheme

Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW

Fully wired and tested contactor assemblies for star-delta (wye-delta) starting • Size S00-S00-S00 • Up to 11 kW

The figure shows the version with screw terminals

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting
 SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW

Fully wired and tested contactor assemblies for star-delta (wye-delta) starting • Size SO-SO-SO • Up to 22 kW
The figure shows the version with screw terminals

[^31]Complete contactor assemblies for star-delta (wye-delta) starting, see page 3/172

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW

Fully wired and tested contactor assemblies for star-delta (wye-delta) starting • Size S2-S2-S0 ${ }^{1 \text {) }}$ - Up to 45 kW and S2-S2-S2 . 55 kW

The figure shows the version with screw terminals in S2-S2-S2

Mountable accessories (optional)
 To be ordered separately Type Page
 3-phase infeed terminal 3RV2935-5A 3/117

Complete contactor assembly for star-delta (wye-delta) starting				
Individual parts	Type			Page
	Q11	Q13	Q12	
(1)(2)(3) Contactors, 22/30 kW	3RT2035	3RT2035	3RT2026	$3 / 58,3 / 69$
(1)(2)(3) Contactors, 37 kW	3RT2035	3RT2035	3RT2027	$3 / 58,3 / 69$
(1)(2)(3) Contactors, 45 kW	3RT2036	3RT2036	3RT2028	$3 / 58,3 / 69$
(1)(2)(3) Contactors, 55 kW	3RT2037	3RT2037	3RT2035	$3 / 58,3 / 69$
(4) \ldots (7) Assembly kit S2-S2-S2	3RA2933-2BB1		$3 / 112$	

(4) Four connectors for three contactors (not required for fully prewired contactor assemblies for star-delta (wye-delta) starting)
(5) Wiring modules on top and bottom for connecting the main and auxiliary circuits
(6) Star jumper S2
(7) Cable for connecting the A2 coil contact of the line contactor with the A2 coil contact of the delta contactor (not shown in the drawing)
Mechanical interlock 3RA2934-2B 3/115
Function modules for star-delta 3RA2816-0EW20 (wye-delta) starting
Base plate star-delta 3RA2932-2F
3/120

1) Complete contactor assembly for star-delta (wye-delta) starting in size S2-S2-S0 (not shown): The 3RA2933-2C assembly kit is to be used here, see page 3/112.

Complete contactor assemblies for star-delta (wye-delta) starting, see page 3/173.

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW

Fully wired and tested contactor assemblies for star-delta (wye-delta) starting • Size S3-S3-S21) • Up to 90 kW

[^32][^33]
Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW

Technical specifications

More information

Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/16150/td
System Manual for modular system, see
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16150/faq
https://support.industry.siemens.com/cs/ww/en/view/60311318
Equipment Manual, see
https://support.industry.siemens.com/cs/ww/en/view/60306557
Application Manual for controls with IE3/IE4 motors, see
https://support.industry.siemens.com/cs/ww/en/view/94770820
Unless otherwise indicated below, the technical specifications correspond to those of the 3RT individual contactors
(see page 3/23 onwards) and 3RU2 overload relays
(see page 7/94 onwards).

Type	3RA2415	3RA2416	3RA2417	3RA2423	3RA2425	3RA2426
Sizes	S00-S00-S00	S00-S00-S00	S00-S00-S00	S0-S0-S0	S0-S0-S0	S0-S0-S0

General data

Dimensions (W x H x D) with function module

- AC operation
- Screw terminals
- Spring-loaded terminals
- DC operation

mm
mm

$135 \times 68 \times 145$	$135 \times 101 \times 171$
$135 \times 84 \times 145$	$135 \times 114 \times 171$
$135 \times 68 \times 145$	$135 \times 101 \times 181$
$135 \times 84 \times 145$	$135 \times 114 \times 181$

- Spring-loaded termi
- Q11 line contactor
- Q13 delta contactor
- Q12 star contactor

Mechanical endurance

$135 \times 68 \times 1$
$135 \times 101 \times 171$
mm
$135 \times 114 \times 181$

Unassigned auxiliary contacts of the individual contactors
For circuit diagrams of the control circuit, see Equipment Manual for contactors/contactor assemblies.

Short-circuit protection

Main circuit without overload relays

- Fuse links, operational class gG: LV HRC, type 3NA; DIAZED, type 5SB; NEOZED, type 5SE
with single or double infeed
Greatest rated current of the fuse according to IEC 60947-4-1

- Type of coordination "1"	A	35	63	100	125
- Type of coordination "2"	A	20	25	35	63

Auxiliary circuit

Short-circuit test

- With fuse links, operational class gG:

6 (up to $I_{\mathrm{k}}<0.5 \mathrm{kA}$; $\leq 260 \mathrm{~V}$), with short-circuit current $I_{\mathrm{k}}=1 \mathrm{kA}$
if the auxiliary contact of the overload relay is connected in the contactor coil circuit. acc. to IEC 60947-5-1

- With miniature circuit breaker, C characteristic 10
with short-circuit current $I_{\mathrm{k}}=400 \mathrm{~A}$
A $\quad 6$ (up to $I_{\mathrm{k}}<0.5 \mathrm{kA} ; \leq 260 \mathrm{~V}$)
if the auxiliary contact of the overload relay is connected in the contactor coil circuit
Short-circuit protection with overload relay
See Configuration Manual for load feeders

Type Sizes			$\begin{aligned} & \text { 3RA2415 } \\ & \text { S00-S00-S00 } \end{aligned}$	$\begin{aligned} & \text { 3RA2416 } \\ & \text { S00-S00-S00 } \end{aligned}$	$\begin{aligned} & \text { 3RA2417 } \\ & \text { S00-S00-S00 } \end{aligned}$	$\begin{aligned} & \text { 3RA2423 } \\ & \text { S0-S0-S0 } \end{aligned}$	$\begin{aligned} & \text { 3RA2425 } \\ & \text { S0-S0-S0 } \end{aligned}$	$\begin{aligned} & \text { 3RA2426 } \\ & \text { S0-S0-S0 } \end{aligned}$
Rated data of the main contacts								
Current-carrying capacity with reversing time up to 10 s								
- Rated operational current I_{e}	At 400 V	A	12	17	25		40	55
	690 V	A	6.9	9	20.8		22.5	35
- Rated power for three-phase motors with 50 Hz and 60 Hz	At 230 V	kW	3.3	4.7	7.2		12	16.6
	400 V	kW	5.8	8.2	12.5		21	30.1
	690 V	kW	5.8	7.5	18		20.4	33
- Switching frequency with overload relay		1/h	15					
Current-carrying capacity with reversing time up to 15 s								
- Rated operational current I_{e}	At 400 V	A	12	17	25		31	44
	690 V	A	6.9	9	20.8		22.5	35
- Rated power for three-phase motors with 50 Hz and 60 Hz	At 230 V	kW	3.3	4.7	7.2		9.4	13.8
	400 V	kW	5.8	8.2	12.5		16.3	24
	690 V	kW	5.8	7.5	18		20.4	33
- Switching frequency with overload relay		1/h	15					
Current-carrying capacity with reversing time up to 20 s								
- Rated operational current I_{e}	At 400 V	A	12	17	25		28	39
	690 V	A	6.9	9	20.8		22.5	35
- Rated power for three-phase motors with 50 Hz and 60 Hz	At 230 V	kW	3.3	4.7	7.2		8.5	12.2
	400 V	kW	5.8	8.2	12.5		14.7	21.3
	690 V	kW	5.8	7.5	18		20.4	33
- Switching frequency with overload relay		1/h	15					

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW

IF3/IE4 ready SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW

Selection and ordering data
Fully wired and tested contactor assemblies for star-delta (wye-delta) starting • Size S00-S00-S00 • Up to 11 kW AC operation \sim or $D C$ operation $==$

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS	$=41 \mathrm{~B}$

3RA241.-8XF31-1A. 0

3RA241.-8XF31-2A. 0

3RA241.-8XE31-2BB4

Rated data AC-3				Rated control supply voltage U_{S}	SD	Screw terminals	()	SD	Spring-loaded	O0	
Operational	Ratings of three-phase motors at 50 Hz and 60 Hz at										
current $I_{\text {e }}$ up to				Article No.		Price per PU		Article No.	Price per PU		
400 V	230 V	400 V	690 V								
A	kW	kW	kW		V	d			d		
AC operation, 50/60 Hz											
12	3.3	5.5	9.2	24 AC	2	3RA2415-8XF31-1AB0		2	3RA2415-8XF31-2AB0		
				110 AC	2	3RA2415-8XF31-1AF0		5	3RA2415-8XF31-2AF0		
				230 AC	2	3RA2415-8XF31-1AP0		2	3RA2415-8XF31-2AP0		
16	4.7	7.5	9.2	24 AC	2	3RA2416-8XF31-1AB0		5	3RA2416-8XF31-2AB0		
				110 AC	2	3RA2416-8XF31-1AFO		5	3RA2416-8XF31-2AF0		
				230 AC	2	3RA2416-8XF31-1AP0		2	3RA2416-8XF31-2AP0		
25	5.5	11	11	24 AC	2	3RA2417-8XF31-1AB0		5	3RA2417-8XF31-2AB0		
				110 AC	2	3RA2417-8XF31-1AF0		5	3RA2417-8XF31-2AF0		
				230 AC	2	3RA2417-8XF31-1AP0		2	3RA2417-8XF31-2AP0		
DC operation											
12	3.3	5.5	9.2	24 DC	2	3RA2415-8XF31-1BB4		2	3RA2415-8XF31-2BB4		
16	4.7	7.5	9.2	24 DC	2	3RA2416-8XF31-1BB4		2	3RA2416-8XF31-2BB4		
25	5.5	11	11	24 DC	2	3RA2417-8XF31-1BB4		2	3RA2417-8XF31-2BB4		

For IO-Link connection

| 12 | 3.3 | $\mathbf{5 . 5}$ | 9.2 | 24 DC | 2 | 3RA2415-8XE31-1BB4 | 2 | 3RA2415-8XE31-2BB4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 16 | 4.7 | $\mathbf{7 . 5}$ | 9.2 | 24 DC | 2 | 3RA2416-8XE31-1BB4 | 2 | 3RA2416-8XE31-2BB4 |
| 25 | 5.5 | $\mathbf{1 1}$ | 11 | 24 DC | 2 | 3RA2417-8XE31-1BB4 | 2 | 3RA2417-8XE31-2BB4 |
| For $\boldsymbol{A S}$-Interface connection | | | | | | | | |
| 12 | 3.3 | $\mathbf{5 . 5}$ | 9.2 | 24 DC | 5 | 3RA2415-8XH31-1BB4 | 2 | 3RA2415-8XH31-2BB4 |
| 16 | 4.7 | $\mathbf{7 . 5}$ | 9.2 | 24 DC | 2 | 3RA2416-8XH31-1BB4 | 5 | 3RA2416-8XH31-2BB4 |
| 25 | 5.5 | $\mathbf{1 1}$ | 11 | 24 DC | 2 | 3RA2417-8XH31-1BB4 | 2 | 3RA2417-8XH31-2BB4 |

Representation of the complete contactor assemblies for star-delta (wye-delta) starting with optionally mountable accessories, see page 3/164.

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW IE3/IE4 ready

Fully wired and tested contactor assemblies for star-delta (wye-delta) starting • Size SO-SO-SO • Up to 22 kW $A C$ operation \sim or DC operation $==$

$\mathrm{PU}($ UNIT, SET, M)	$=1$
	$=1$ unit
PS	$=41 \mathrm{~B}$

3RA242.-8XF32-1A. 2

Rated data AC-3				Rated control supply voltage U_{s}	SD
Operational current I_{e} up to	Ratings of three-phase motors at 50 Hz and 60 Hz at				
400 V	230 V	400 V	690 V		
A	kW	kW	kW	V	d

A	kW	kW	kW	V	d
AC operation, $50 / 60 \mathrm{~Hz}$					
25	7.1	$\mathbf{1 1}$	19	24 AC	2

			230 AC	2	
$32 / 40$	11.4	$\mathbf{1 5 / 1 8 . 5}$	19	24 AC	2
				110 AC	2
				230 AC	
50	--	$\mathbf{2 2}$	19	24 AC	2
				110 AC	2

DC operation		230 AC	5		
25	7.1	$\mathbf{1 1}$	19	24 DC	2
$32 / 40$	11.4	$\mathbf{1 5 / 1 8 . 5}$	19	24 DC	-
50	--	$\mathbf{2 2}$	19	24 DC	2

For IO-Link connection

25	7.1	$\mathbf{1 1}$	19	$24 D C$
$32 / 40$	11.4	$\mathbf{1 5 / 1 8 . 5}$	19	24 DC
50	--	$\mathbf{2 2}$	19	$24 D C$

For AS-Interface connection

| 25 | 7.1 | $\mathbf{1 1}$ | 19 | 24 DC | 5 | 3RA2423-8XH32-1BB4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $32 / 40$ | 11.4 | $\mathbf{1 5} / 18.5$ | 19 | 24 DC | 5 | 3RA2425-8XH32-1BB4 |
| 50 | -- | $\mathbf{2 2}$ | 19 | 24 DC | 2 | 3RA2426-8XH32-1BB4 |

Representation of the complete contactor assemblies for star-delta (wye-delta) starting with optionally mountable accessories, see page 3/165.

3RA242.-8XE32-1BB4

Screw terminals

3RA2423-8XF32-1AC2 3RA2423-8XF32-1AG2 3RA2423-8XF32-1AL 3RA2425-8XF32-1AC 3RA2425-8XF32-1AG2 3RA2425-8XF32-1AL2 3RA2426-8XF32-1AG 3RA2426-8XF32-1AL 3RA2425-8XF32-1BB4 3RA2426-8XF32-1BB4

3RA242.-8XF32-2A. 2

SD	Spring-loaded terminals	Price
Price per PU	Article No.	per PU

3RA2423-8XF32-2AC2 3RA2423-8XF32-2AG2 3RA2423-8XF32-2AL2 3RA2425-8XF32-2AC2 3RA2425-8XF32-2AG2 3RA2425-8XF32-2AL2 3RA2426-8XF32-2AC2 3RA2426-8XF32-2AG2 3RA2426-8XF32-2AL2

3RA2423-8XF32-2BB4 3RA2425-8XF32-2BB4 3RA2426-8XF32-2BB4

3RA2423-8XE32-2BB4 3RA2425-8XE32-2BB4 3RA2426-8XE32-2BB4

3RA2423-8XH32-2BB4 3RA2425-8XH32-2BB4 3RA2426-8XH32-2BB4

IF3/IE4 ready SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW
Fully wired and tested contactor assemblies for star-delta (wye-delta) starting • Size S2-S2-SO • Up to 45 kW and S2-S2-S2 • 55 kW $A C$ operation \sim or AC/DC operation \approx

```
PU (UNIT, SET, M) = 1
PS* = 1 unit
PG = 41B
```


3RA2437-8XF32-1A. 2

AC/DC operation, $50 / 60 \mathrm{~Hz}$ AC or DC

With integrated coil circuit
(varistor integrated in electronics at the factory)

50/65	19.6	22/30	34	$20 . . .33 \mathrm{AC} / \mathrm{DC}$	2	3RA2434-8XF32-1NB3	--
80	25	37	63	$20 . . .33$ AC/DC	2	3RA2435-8XF32-1NB3	--
86	27	45	63	$20 . . .33$ AC/DC	2	3RA2436-8XF32-1NB3	--
115	37	55	93	$20 . . .33$ AC/DC	5	3RA2437-8XF32-1NB3	--
For IO-Link connection							
50/65	19.6	22/30	34	$20 . . .33 \mathrm{AC} / \mathrm{DC}$	5	3RA2434-8XE32-1NB3	--
80	25	37	63	$20 . . .33 \mathrm{AC} / \mathrm{DC}$	5	3RA2435-8XE32-1NB3	--
86	27	45	63	$20 . . .33$ AC/DC	5	3RA2436-8XE32-1NB3	--
115	37	55	93	$20 . . .33 \mathrm{AC} / \mathrm{DC}$	5	3RA2437-8XE32-1NB3	--
For AS-Interface connection							
50/65	19.6	22/30	34	20... $33 \mathrm{AC} / \mathrm{DC}$	5	3RA2434-8XH32-1NB3	--
80	25	37	63	20... $33 \mathrm{AC} / \mathrm{DC}$	X	3RA2435-8XH32-1NB3	--
86	27	45	63	$20 . . .33$ AC/DC	x	3RA2436-8XH32-1NB3	--
115	37	55	93	$20 . . .33$ AC/DC	X	3RA2437-8XH32-1NB3	--

Representation of the complete contactor assemblies for star-delta (wye-delta) starting in size S2-S2-S2 with optionally mountable accessories, see page 3/166.

3RA2434-8XE32-1NB3

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting, up to 90 kW IE3/IE4 ready

Fully wired and tested contactor assemblies for star-delta (wye-delta) starting • Size S3-S3-S2 • Up to 90 kW AC operation \sim or AC/DC operation \sim

```
PU (UNIT, SET, M) = 1
PS* = 1 unit
PG = 41B
```


3RA244.-8XF32-1A. 2
Rated data AC-3

			110 AC	X	
			230 AC	X	
150	37	75	110	$24 A C$	X
				110 AC	X

160	45	90	132

AC/DC operation, $50 / 60 \mathrm{~Hz}$ AC or DC
With integrated coil circuit
(varistor integrated in electronics at the factory)

115	30	55	90	$20 . . .33 \mathrm{AC} / \mathrm{DC}$	X	3RA2444-8XF32-1NB3	--
150	37	75	110	$20 . .33$ AC/DC	5	3RA2445-8XF32-1NB3	--
160	45	90	132	$20 . .33$ AC/DC	X	3RA2446-8XF32-1NB3	--
For IO-Link connection							
115	30	55	90	$20 . .33$ AC/DC	x	3RA2444-8XE32-1NB3	--
150	37	75	110	$20 . . .33$ AC/DC	X	3RA2445-8XE32-1NB3	--
160	45	90	132	$20 . .33$ AC/DC	X	3RA2446-8XE32-1NB3	--
For AS-Interface connection							
115	30	55	90	$20 . .33$ AC/DC	x	3RA2444-8XH32-1NB3	--
150	37	75	110	$20 . .33$ AC/DC	X	3RA2445-8XH32-1NB3	--
160	45	90	132	$20 . . .33$ AC/DC	X	3RA2446-8XH32-1NB3	--

Representation of the complete contactor assemblies for star-delta (wye-delta) starting with optionally mountable accessories, see page 3/167.

3RA244.-8XE32-1NB3

Rated control supply voltage U_{s}	SD	Screw terminals	$\text { (})$	SD	Spring-loaded terminals	00
		Article No.	Price per PU	d	Article No.	Price per PU
V	d					
24 AC	X	3RA2444-8XF32-1AC2			--	
110 AC	X	3RA2444-8XF32-1AG2			--	
230 AC	X	3RA2444-8XF32-1AL2			--	
24 AC	X	3RA2445-8XF32-1AC2			--	
110 AC	X	3RA2445-8XF32-1AG2			--	
230 AC	5	3RA2445-8XF32-1AL2			--	
24 AC	X	3RA2446-8XF32-1AC2			--	
110 AC	X	3RA2446-8XF32-1AG2			--	
230 AC	5	3RA2446-8XF32-1AL2			--	

230 AC

3RA244.-8XH32-1NB3

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

Contactor assemblies for star-delta (wye-delta) starting consisting of SIRIUS 3RT contactors, up to 500 kW

Overview

The individual parts for the contactor assemblies for star-delta (wye-delta) starting for customer assembly must be ordered separately.

- 3RT contactors: The operating times of the individual 3RT10 contactors are rated in such a way that no overlapping of the contact making and the arcing time between two contactors can occur on reversing, provided they are interlocked by way of their auxiliary switches (NC contact interlock) and the mechanical interlock. For assemblies with AC operation and $50 / 60 \mathrm{~Hz}$, a dead interval of 50 ms must be provided when used with voltages over 500 V ; a dead interval of 30 ms is recommended for use with voltages up to and including 400 V . These dead times do not apply to assemblies with DC operation. The operating times of the individual contactors are not affected by the mechanical interlock.
- Mechanical interlock
- Wiring kits: consisting of wiring modules or link rails and star jumpers
- Adapter for the mechanical interlock between S6 and S3
- Base plate

Additional components

- For momentary-contact operation: auxiliary switch (NO contact) for self-locking
- 3RB2 overload relays (page 7/123 onwards), SIMOCODE pro 3UF7 motor management and control devices (page 10/16 onwards) or 3RN2 thermistor motor protection relays (page 10/143 onwards) can be used for overload protection.
The overload relay can either be mounted onto the line contactor or separately fitted. It must be set to 0.58 times the rated motor current.
- Optional surge suppression for the S3 contactors; the contactors in sizes S6 to S12 are wired as standard with varistors.
The contactor assemblies for star-delta (wye-delta) starting for customer assembly are designed for standard applications

Note:

Contactor assemblies for star-delta (wye-delta) starting in special applications such as very heavy starting ${ }^{11}$ or star-delta (wye-delta) starting of special motors must be customized. Help with designing such special applications is available from our Technical Support,

1) For effective assistance from Technical Support, you must provide the following details:

- Rated motor voltage,
- Rated motor current,
- Service factor, operating values
- Motor starting current factor
- Starting time
- Ambient temperature
www.siemens.com/support-request.

More information

Homepage, see www.siemens.com/sirius
Industry Mall, see www.siemens.com/product?3RA24_3RT

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

Contactor assemblies for star-delta (wye-delta) starting consisting of SIRIUS 3RT contactors, up to 500 kW
Contactor assemblies for star-delta (wye-delta) starting for customer assembly • Size S6-S6-S3 • Up to 160 kW

[^34] 3RT204..-.KB coupling contactors, size S3.

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

Contactor assemblies for star-delta (wye-delta) starting consisting of SIRIUS 3RT contactors, up to 500 kW
Contactor assemblies for star-delta (wye-delta) starting for customer assembly • Size S6-S6-S6 • Up to 160 kW

Switching devices - Contactors and contactor assemblies - for switching motors

 Contactor assemblies for star-delta (wye-delta) startingContactor assemblies for star-delta (wye-delta) starting consisting of SIRIUS 3RT contactors, up to 500 kW
Contactor assemblies for star-delta (wye-delta) starting for customer assembly • Size S10-S10-S6 • Up to 250 kW

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

Contactor assemblies for star-delta (wye-delta) starting consisting of SIRIUS 3RT contactors, up to 500 kW
Contactor assemblies for star-delta (wye-delta) starting for customer assembly • Size S10-S10-S10 • Up to 250 kW

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

Contactor assemblies for star-delta (wye-delta) starting consisting of SIRIUS 3RT contactors, up to 500 kW
Contactor assemblies for star-delta (wye-delta) starting for customer assembly • Size S12-S12-S10 • Up to 500 kW

Switching devices - Contactors and contactor assemblies - for switching motors Contactor assemblies for star-delta (wye-delta) starting

Contactor assemblies for star-delta (wye-delta) starting consisting of SIRIUS 3RT contactors, up to 500 kW
Contactor assemblies for star-delta (wye-delta) starting for customer assembly • Size S12-S12-S12 • Up to 500 kW

	Price groups PG 41A, 41B
4/2	Introduction
	Contactors for special applications
4/6	SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A $\mathbf{~ N / W V}$
4/23	SIRIUS 3RT. 3 contactors, 4-pole up to 525 A
4/38	SIRIUS 3RT25 contactors, 4-pole, $2 \mathrm{NO}+2 \mathrm{NC}$
4/44	SIRIUS 3RT26 contactors for capacitive loads (AC-6b), 3-pole
4/53	SIRIUS 3RT23 to 3RT26, 3RT14 contactors
4/55	Contactors for railway applications - SIRIUS 3RT contactors with extended operating range, 3 -pole
4/63	- SIRIUS 3RH2 contactor relays with extended operating range
4/65	- 3TH4 contactor relays, 8-pole
4/67	- 3TC contactors for switching DC voltage, 2-pole
4/69	3TC contactors for switching DC voltage, 1 - and 2-pole
3/143	3TG10 power relays/miniature contactors

Switching devices - Contactors and contactor assemblies - Special applications

Introduction
Overview

Overview of the 3RT and 3TF contactors

More information					
Homepage, see www.siemens.com/sirius Industry Mall, see www.siemens.com/product?3RT_3TK_3TC			Conversion tool for article numbers, see www.siemens.com/sirius/conversion-tool TIA Selection Tool Cloud (TST Cloud), see https://www.siemens.com/tstcloud/?node=Contactor		
$\begin{aligned} & \text { Size } \\ & \text { Type } \end{aligned}$	S3 3RT244.		S6 3RT1456	S10 3RT146.	S12 3RT1476
3-pole 3RT244 and 3RT145 to 3RT147 contactors					
Type Number of main contacts AC, AC/DC operation	$\begin{aligned} & \text { 3RT2446 } \\ & \text { 3 NO } \\ & \text { (p. 4/18) } \end{aligned}$	3RT2448	$\begin{aligned} & \text { 3RT1456 } \\ & 3 \text { NO } \\ & (\text { p. } 4 / 19,4 / 20) \end{aligned}$	3RT1466 3 NO (p. $4 / 19,4 / 20$)	$\begin{aligned} & \text { 3RT1476 } \\ & \text { 3 NO } \\ & (\text { p. } 4 / 19,4 / 20) \end{aligned}$
AC-1					
$U_{i} \quad \mathrm{~V}$	1000				
$U_{\text {e }}$	690				
I_{e} up to 690 V $40{ }^{\circ} \mathrm{C}$ $60^{\circ} \mathrm{C}$ A	$\begin{aligned} & 140 \\ & 130 \end{aligned}$	$\begin{aligned} & 160 \\ & 140 \end{aligned}$	$\begin{aligned} & 275 \\ & 250 \end{aligned}$	400 500 380 450	690 Standard operating mechanism: 650, solid-state operating mechanism: 600
Accessories for contactors					
Auxiliary switches	3RH29, 3RA28	(p. 3/95 ... 3/102)	3RH19, 3RT1926		p. 3/98, 3/100, 3/101, 3/103)
Function modules (direct-on-line starting, star-delta (wye-delta) starting)	3RA281.	(p. 3/107)	--		
Terminal covers	3RT2946-4EA4	(p. 3/119)	3RT1956-4EA.		(p. 3/119)
Box terminal blocks	--		3RT1955/56-4G		(p. 3/117)
Surge suppressors	3RT2936, 3RT29	46 (p. 3/104, 3/105)	3RT1956-1C (RC		(p. 3/105)

Switching devices - Contactors and contactor assemblies - Special applications

Introduction

${ }^{1)}$ The value in brackets applies to the NC for DC operation.

Connection methods

The following connection options are available for 3RT contactors depending on the size and version:

- 3RT2 contactors
- Sizes S00 and SO: screw terminals or spring-loaded terminals both for the main as well as for the auxiliary and control circuits
- Sizes S2 and S3: screw terminals (complete devices) or spring-loaded terminals (auxiliary circuit only)
- 3RT13 contactors, sizes S6 to S12: Busbar connections (partly with bus connectors offset), auxiliary and control circuits with screw terminals
- 3RT14 contactors: Busbar connections
(1) Screw terminals
0 Spring-loaded terminals
${ }^{\circ}$ Busbar connections
The connection method is indicated in the corresponding tables by the respective symbol shown on an orange background.

Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

Overview

3-pole AC-1 contactors
top row: 3RT148 contactors
bottom row: 3RT244, 3RT145 to 3RT147 contactors

Standards

IEC/EN 60947-1, IEC/EN 60947-4-1, IEC/EN 60947-5-1 (auxiliary switches)

Connection methods

Main circuit

- 3RT244 contactors: Screw terminals with box terminal; direct connection to the connecting bar possible with cable lugs when the box terminal is removed.
- 3RT145 to 3RT147 contactors: screw terminals with connecting bars that the cables can be connected to using either cable lugs or flexible or rigid busbars. Alternatively, box terminals are available as accessories.
- 3RT148 contactors: Busbar connections

Auxiliary/control circuit

Screw terminals

Operating mechanism types

3RT244 contactors

These contactors are available as versions with conventional AC or DC operating mechanisms or as versions with a wide-range solid-state operating mechanism and a universal actuating voltage (AC or DC operation).
With an operating range from 0.8 to $1.1 \times U_{\mathrm{S}}$, control takes place via the control supply voltage connection A1-A2.

3RT145 to 3RT147 contactors

Control and/or operating mechanism versions:

- Standard operating mechanism with economy circuit for AC and DC operating mechanism (switchover from closing coil to holding coil)
- Solid-state operating mechanisms Overvoltage damping of the operating mechanism coil is already integrated in the electronics for contactors with solidstate operating mechanisms. The operating mechanisms are powered via a supply voltage with an operating range from 0.8 to $1.1 \times U_{\mathrm{s}}$, optionally also controlled depending on the chosen mode of operation. Alternatively, control is via the separate 24 V DC control signal input. Various rated voltage ranges for AC/DC control are available.

The following versions are available:

- With two operating modes: Direct control or via PLC input
- As above, but additionally with remaining lifetime indicator (RLT)
- With fail-safe PLC input for simplification of safety applications (without mode of operation selection)

3RT148 contactors

These are equipped with a solid-state operating mechanism for AC/DC control; coil attenuation is integrated. The operating range is $0.85 \ldots 1.1 \times U_{s}$.

Switching devices - Contactors and contactor assemblies - Special applications

SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

Solenoid coils/drive units

3RT244 contactors

Coil replacement is possible.
3RT145 to 3RT147 contactors
The operating mechanisms for 3RT14..-.A/-.N/-.P contactors are removable and can be replaced simply by unlocking and pulling them out.

NOTICE: Removal or changing of the operating mechanism is not permitted for 3RT14..-.S contactors with fail-safe control

3RT148 contactors

The operating mechanisms for the 3RT148 contactors are removable and can be replaced simply by unlocking and pulling them out.

Accessories and spare parts

- 3RT244 and 3RT145 to 3RT147 contactors, see also Basic units, page 3/77 onwards
- For 3RT148 contactors, see page 4/21 onwards

Contactors in safety-related applications

Contactors are a significant part of safety-related applications They are generally the actuators that perform the switching operation leading to the safe disconnection of the corresponding application or system.

Contactors with mirror contacts according to IEC 60947-4-1 are generally required for use in safety-related applications. Most of our contactors meet this requirement; a corresponding note can be found in the technical product data sheet.

Contactors with increased tamper protection

Increased tamper protection is ensured either by using our contactor versions with permanently mounted auxiliary switches installed in the factory protected against mechanical, external actuation (e.g. 3RT2...-....-3MA0 or 3RT1...-...-3PAO contactors), or by using the 3RT2916-4MA10 or 3RT1926-4MA10 sealable cover as an accessory (see page 3/119).

Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

Connection of contactors to fail-safe control modules

While contactors with smaller power ratings can be connected directly to the outputs of fail-safe controllers, implementing safety-related applications with standard contactors with higher power is much more complicated and elaborate because of the necessary coupling links.
Example for SIL 2 and SIL 3 / PL e application - previously:

Due to their fail-safe control input, the special versions from size S6 to S12 (3RT14..-.S) provide a much simpler way of doing this

For more information on safety systems, see page 11/1 onwards.

Application with safety-related disconnection with standard contactors
Example for SIL 3 / PL e (left-hand side) and SIL 2 / PL c (right-hand side) application - new:

[^35]
Switching devices - Contactors and contactor assemblies - Special applications

Contactors for special applications
SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

Overview graphics with mountable accessories

- 3RT244 and 3RT145 to 3RT147 contactors, see also Basic
units, page 3/11 onwards
- 3RT148 contactors, see following graphic

3RT1481 to 3RT1487 contactors with mountable accessories

Application

The 3RT. 4 contactors can be used for the following applications:

- For switching weak or non-inductive loads (AC-1)
- Disconnecting loads or power generation plants from the grid (e.g. wind turbines or photovoltaic systems)
- Disconnecting frequency converters from the grid

Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

Technical specifications

More information

Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/24229/td
Manuals, see
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/24229/faq

Type	3RT2446, 3RT2448	3RT1456	3RT1466	3RT1467	3RT1476
Size	S3	S6	S10		S12

General data

Dimensions (W x H x D)

- Basic units
- Screw/spring-loaded terminals
- Basic unit with mounted auxiliary switch
- Screw terminals
- Spring-loaded terminals

mm	$70 \times 140 \times 152$	$120 \times 172 \times 170$	$145 \times 210 \times 202$	$160 \times 214 \times 225$
mm	$70 \times 140 \times 196$	$120 \times 172 \times 217$	$145 \times 210 \times 251$	$160 \times 214 \times 271$

- Basic unit with mounted function module or solid-state time-delayed auxiliary switch
- Screw/spring-loaded terminals

Permissible mounting position

The contactors are designed for operation on a vertical mounting surface

Switching devices - Contactors and contactor assemblies - Special applications

Contactors for special applications
SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

| Type | 3RT2446, 3RT2448 | 3RT1456 | 3RT1466, 3RT1467 | 3RT1476 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Size | S3 | S6 | S10 | S12 |

Control (continued)

Type of PLC control input according to IEC 60947-1
Solid-state operating mechanism

- Version	$\begin{aligned} & \text { 3RT14...-N/-.P } \\ & \text { 3RT14..-.S } \end{aligned}$		--	Type 2 Type 1
- Rated voltage		V DC	--	24
- Operating range		V DC	--	$17 . .30$
- Power consumption		mA	--	≤ 30
- Recovery time after mains failure,	3RT14..-.S	S	--	2

- Recovery time after mains failure, 3RT14..-.S

Operating times for $1.0 \times U_{s}{ }^{1)}$

(Total break time =
Opening delay + Arcing time)
Standard operating mechanism 3RT.4..-.A

- Closing delay
- Opening delay

Solid-state operating mechanism

- Actuated via A1/A2
- Closing delay
- Opening delay
- Actuated via PLC input
- Closing delay
- Opening delay

Actuated via F-PLC input 3RT14..-.S

- Closing delay
- Opening delay
- Arcing time

	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 13 \ldots 50 \\ & 10 \ldots 21 \end{aligned}$	$\begin{aligned} & 25 \ldots 50 \\ & 40 \ldots 60 \end{aligned}$	$\begin{aligned} & 35 \ldots 50 \\ & 50 \ldots 80 \end{aligned}$	$\begin{aligned} & 50 \ldots 70 \\ & 70 \ldots 100 \end{aligned}$
3RT.4..-.N/-.P					
	ms	50... 70	$100 . . .120$	110 ... 130	$125 \ldots 150$
	ms	$38 \ldots 57$	$80 \ldots 100$		
3RT14..-.N/-.P					
	ms	--	$40 . . .60$	50... 65	$65 . .880$
	ms	--	$80 \ldots 100$		
3RT14..-.S					
	ms	--	$60 \ldots 75$		
	ms	--	$115 \ldots 130$		
	ms	10... 20	10... 15		

1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 to 5 ms , diode assembly: $2 x$ to $6 x$).

SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

Type Size		$\begin{aligned} & \text { 3RT2446 } \\ & \text { S3 } \end{aligned}$	3RT2448	$\begin{aligned} & \text { 3RT1456 } \\ & \text { S6 } \end{aligned}$	$\begin{aligned} & \text { 3RT1466 } \\ & \text { S10 } \end{aligned}$	3RT1467	$\begin{aligned} & \text { 3RT1476 } \\ & \text { S12 } \end{aligned}$
Rated data of the main contacts							
Load rating with AC Utilization category AC-1							
- Rated operational currents I_{e}	At $40^{\circ} \mathrm{C}$ up to 690 V A At $60^{\circ} \mathrm{C}$ up to 690 VA Up to 1000 V A	$\begin{aligned} & 140 \\ & 130 \\ & \\ & 60 \end{aligned}$	$\begin{gathered} 160 \\ 140 \\ \\ 80 \end{gathered}$	$\begin{aligned} & 275 \\ & 250 \end{aligned}$	$\begin{aligned} & 400 \\ & 380 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	690 Standard operating mechanism: 650, solid-state operating mechanism: 600
- Minimum cross-section in the main circuit at maximum AC-1 rated value	mm^{2}	50	70	140	240	300	480
Utilization categories AC-2 and AC-3 With an electrical endurance of 1.3 million operating cycles							
- Rated operational currents I - Rated power for slipring or squirrel-cage motors at 50 and 60 Hz	Up to 400 V A Up to 690 V A	$\begin{aligned} & 44 \\ & 44 \end{aligned}$		$\begin{aligned} & 97 \\ & 97 \end{aligned}$	$\begin{aligned} & 138 \\ & 138 \end{aligned}$		$\begin{aligned} & 170 \\ & 170 \end{aligned}$
	$\begin{array}{rll} \text { At } 230 \vee & \mathrm{~kW} \\ 400 \vee & \mathrm{~kW} \\ 500 \vee & \mathrm{~kW} \\ 690 \mathrm{VW} \end{array}$	$\begin{aligned} & 12.7 \\ & 22 \\ & 29.9 \\ & 38.2 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 55 \\ & 55 \\ & 90 \end{aligned}$	$\begin{aligned} & 37 \\ & 75 \\ & 90 \\ & 132 \\ & \hline \end{aligned}$		$\begin{array}{r} 55 \\ 90 \\ 110 \\ 160 \\ \hline \end{array}$
Power loss per conducting path	At $I_{\mathrm{e}} / \mathrm{AC}-1 \mathrm{~W}$	--		20	27	42	55
Load rating with DC Utilization category DC-1, ($L / R \leq 1 \mathrm{~ms}$) - Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$) - 1 conducting path							
	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \mathrm{~A} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & 130 \\ & 80 \\ & 12 \end{aligned}$	140	$\begin{aligned} & 250 \\ & 250 \\ & 18 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 33 \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \text { A } \\ & 440 \mathrm{~V} \text { A } \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.8 \\ & 0.48 \end{aligned}$		$\begin{aligned} & 3.4 \\ & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 0.9 \\ & 0.6 \end{aligned}$		
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \quad \mathrm{~A} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & 130 \\ & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~A} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 13 \\ & 2.4 \\ & 1.3 \end{aligned}$		$\begin{aligned} & 20 \\ & 3.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 380 \\ & 4 \\ & 2 \end{aligned}$		500
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \mathrm{~A} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \text { A } \end{array}$	$\begin{aligned} & 130 \\ & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \text { A } \\ & 440 \mathrm{~V} \text { A } \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 130 \\ & 6 \\ & 3.4 \end{aligned}$	140	$\begin{aligned} & 250 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 380 \\ & 11 \\ & 5.2 \end{aligned}$		500
Utilization category DC-3/DC-5, shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)							
- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)							
- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \mathrm{~A} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & 6 \\ & 3 \\ & 1.25 \end{aligned}$		$\begin{aligned} & 250 \\ & 7.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 380 \\ & 11 \\ & 3 \end{aligned}$		500
	$\begin{aligned} & 220 \mathrm{~V} \text { A } \\ & 440 \mathrm{~V} \text { A } \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.15 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.6 \\ & 0.17 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.125 \end{aligned}$		
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \quad \mathrm{~A} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & 130 \\ & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \text { A } \\ & 440 \text { V A } \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.75 \\ & 0.42 \\ & 0.27 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$			
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \mathrm{~A} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & 130 \\ & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
	$\begin{aligned} & 220 \vee \mathrm{~A} \\ & 440 \mathrm{~V} \text { A } \\ & 600 \mathrm{~V} \text { A } \end{aligned}$	$\begin{aligned} & 4 \\ & 0.8 \\ & 0.45 \end{aligned}$		$\begin{aligned} & 250 \\ & 1.4 \\ & 0.75 \end{aligned}$	380		500

Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

Type	3RT2446	3RT2448	3RT1456	3RT1466, 3RT1467	3RT1476
Size	S3		S6	S10	S12

Rated data of main contacts (continued)

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour
Contactors without overload relays

- No-load switching frequency

- Standard operating	3RT244.-.A	$1 / h$
mechanism	3RT14....A	$1 / h$
- Solid-state operating	3RT14....N/-.P	$1 / h$
mechanism	3RT14..-.S	$1 / h$

- Switching frequency z during rated operation
- Standard operating mechanism 3RT244.-.A $\quad I_{\mathrm{e}} / \mathrm{AC}-1$ at $400 \mathrm{~V} \quad 1 / \mathrm{h}$
- Standard operating mechanism $\quad I_{\mathrm{e}} / \mathrm{AC}-1$ at $400 \mathrm{~V} 1 / \mathrm{h}$ 3RT14..-.A and solid-state operating mechanism 3RT14..-.N/-.P
- Solid-state operating mechanism 3RT14..-.S $\quad I_{\mathrm{e}} / \mathrm{AC}-1$ at $400 \mathrm{~V} 1 / \mathrm{h}$

Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I\right) \cdot\left(U_{\mathrm{e}} / U\right)^{1.5} \cdot 1 / \mathrm{h}$

Type		3RT2446, 3RT2448
Size		S3
Conductor cross-sections		
Main conductors (1 or 2 conductors can be connected)		Screw terminals
- Solid	mm^{2}	$\left.2 \times(2.5 \ldots 16)^{1}\right)$
- Stranded	mm^{2}	$2 \times(6 \ldots 16)^{1)} ; 2 \times(10 \ldots 50)^{1)} ; 1 \times(10 \ldots 70)^{1)}$
- Finely stranded with end sleeve (DIN 46228)	mm^{2}	$2 \times(2.5 \ldots 35)^{1)} ; 1 \times(2.5 \ldots 50)^{1}$
- AWG cables, solid or stranded	AWG	$\left.2 \times(10 \ldots 1 / 0)^{1}\right) ; 1 \times(10 \ldots 2 / 0)^{1}$
- Terminal screws - Tightening torque	Nm	Hexagon socket, A/F 4 4.5 ... 6 (40 ... $53 \mathrm{lb} . \mathrm{in}$)
Auxiliary conductors and control conductors (1 or 2 conductors can be connected)		
- Solid or stranded	mm^{2}	$2 \times(0.5 \ldots 1.5)^{1)} ; 2 \times(0.75 \ldots 2.5)^{1)}$
- Finely stranded with end sleeve (DIN 46228)	mm^{2}	$2 \times(0.5 \ldots 1.5)^{1} ; 2 \times(0.75 \ldots 2.5)^{1)}$
- AWG cables, solid or stranded	AWG	$2 \times(20 \ldots 16)^{1} ; 2 \times(18 \ldots 14)^{1)}$
- Terminal screws - Tightening torque	Nm	$\begin{aligned} & \text { M3 (for Pozidriv size 2; Ø } 5 \text {... 6) } \\ & 0.8 \text {... } 1.2 \text { (7 ... } 10.3 \text { lb.in) } \end{aligned}$

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

Type Size			3RT1456		3RT1466, 3RT1467 S10	3RT1476 S12
Conductor cross-sections						
Main conductors (1 or 2 conductors can be connected)			(1) Screw terminals			
With mounted box terminals		Type	$\frac{\text { 3RT1955-4G }}{\text { M10 (hexagon socket, A/F 4) }}$	3RT1956-4G	3RT1966-4G	
Terminal screws				M10 (hexagon socket, A/F 4)	M12 (hexa	socket, A/F 5)
	- Tightening torque	Nm lb.in	$\begin{aligned} & 10 \ldots 12 \\ & 90 \ldots 110 \end{aligned}$	$\begin{array}{lll} 10 \ldots & 12 \\ 90 \ldots & 110 \end{array}$	$\begin{aligned} & 20 \ldots 22 \\ & 180 \ldots 195 \end{aligned}$	
Front clamping point connected						
	- Finely stranded with end sleeve (DIN 46228) - Finely stranded without end sleeve - Stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	16 ... 70 16 ... 70 16 ... 70	$\begin{aligned} & 16 \ldots \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & \text {... } 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \ldots 240 \\ & 70 \ldots 240 \\ & 95 \ldots 300 \end{aligned}$	
	- AWG cables, solid or stranded	AWG	6 ... 2/0	6 ... 250 kcmil	3/0 ... 600 kcmil	
	- Ribbon cable conductors (Number x Width x Thickness)	mm	Min. $3 \times 9 \times 0.8$, max. $6 \times 15.5 \times 0.8$	Min. $3 \times 9 \times 0.8$, max. $10 \times 15.5 \times 0.8$	Min. $6 \times 9 \times 0.8$, max. $20 \times 24 \times 0.5$	
Rear clamping point connected						
	- Finely stranded with end sleeve (DIN 46228) - Finely stranded without end sleeve - Stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 16 \ldots 70 \\ & 16 \ldots 70 \end{aligned}$ $16 \text {... } 70$	$\begin{array}{lll} 16 & \ldots & 120 \\ 16 & \ldots & 120 \\ 16 & \ldots & 120 \end{array}$	$\begin{aligned} & 120 \ldots 185 \\ & 120 . \ldots .185 \\ & 120 \ldots 240 \end{aligned}$	
	- AWG cables, solid or stranded	AWG	6 ... 2/0	6 ... 250 kcmil	250 ... 500 kcmil Min. $6 \times 9 \times 0.8$, max. $20 \times 24 \times 0.5$	
	- Ribbon cable conductors (Number x Width x Thickness)	mm	Min. $3 \times 9 \times 0.8$, max. $6 \times 15.5 \times 0.8$	Min. $3 \times 9 \times 0.8$, $\max .10 \times 15.5 \times 0.8$		
Both clamping points connected (minimum cross-section $16 \mathrm{~mm}^{2}$)						
	- Finely stranded with end sleeve (DIN 46228) - Finely stranded without end sleeve - Stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	Max. $1 \times 50,1 \times 70$ Max. $1 \times 50,1 \times 70$ Max. $1 \times 50,1 \times 70$	Max. $1 \times 95,1 \times 120$ Max. $1 \times 95,1 \times 120$ Max. $1 \times 95,1 \times 120$	Min. 2×50, max. 2×185 Min. 2×50, max. 2×185 Min. 2×70, max. 2×240	
	- AWG cables, solid or stranded	AWG	Max. $2 \times 1 / 0$	Max. $2 \times 3 / 0$	Min. $2 \times 2 / 0$, max. 2×500 kcmil	
	- Ribbon cable conductors (Number \times Width x Thickness)	mm	Max. $2 \times(6 \times 15.5 \times 0.8)$	Max. $2 \times(10 \times 15.5 \times 0.8)$	$\text { Max. } 2 \times(20$	$24 \times 0.5)$
Busbar connections						
	- Connecting bar (max. width)	mm	17		25	
	- Bore diameter	mm	9		11	
Cable lug connection			1)		2)	
	- Finely stranded with cable lug - Stranded with cable lug	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 16 \ldots 95 \\ & 25 \ldots 120 \end{aligned}$		$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \end{aligned}$	
	- AWG cables, solid or stranded	AWG	4 ... 250 kcmil		2/0 ... 500 kcmil	
	- Terminal screws - Tightening torque	Nm lb.in	$\begin{aligned} & \text { M8 } \times 25 \text { (A/F 13) } \\ & 10 \ldots 14 \\ & 90 \ldots 124 \end{aligned}$		$\begin{aligned} & \text { M10 x } 30(\mathrm{~A} / \mathrm{F} 17) \\ & 14 \ldots 24 \\ & 124 \ldots 210 \end{aligned}$	

Auxiliary conductors

(1 or 2 conductors can be connected)

- Solid
$\mathrm{mm}^{2} \quad \begin{aligned} & 2 \times(0.5 \ldots 1.5)^{3)} ; 2 \times(0.75 \ldots 2.5)^{3)} \text { acc. to IEC 60947; } \\ & \quad \operatorname{max.} 2 \times(0.75 \ldots 4)^{3}\end{aligned}$
- Finely stranded with end sleeve (DIN 46228)
- AWG cables, solid or stranded
$\left.\left.\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5)^{3}\right) ; 2 \times(0.75 \ldots 2.5)^{3}\right)$
- Terminal screws

AWG $2 \times(18 \ldots 14)$

- Tightening torque

M3 (Pozidriv size 2)
Nm $\quad 0.8 \ldots 1.2$
lb.in $\quad 7$... 10.3

Auxiliary conductors ${ }^{4}$

(1 or 2 conductors can be connected)

- Operating devices
- Solid
- Finely stranded with end sleeve (DIN 46228)
- Finely stranded without end sleeve
- AWG cables, solid or stranded

| mm^{2} | $2 \times(0.25 \ldots 2.5)$ | |
| :--- | :--- | :--- | :--- |
| mm^{2} | $2 \times(0.25 \ldots$ | $1.5)$ |
| mm^{2} | $2 \times(0.25 \ldots 2.5)$ | |
| AWG | $2 \times(24 \ldots \ldots)$ | |

1) 3RT1456: When connecting cable lugs according to DIN 46235, the 3RT1956-4EA1 terminal cover is required for conductor cross-sections larger than $95 \mathrm{~mm}^{2}$ to maintain the phase clearance, see page $3 / 119$.
2) 3RT1466, 3RT1467 and 3RT1476: When connecting cable lugs according to DIN 46234 for conductor cross-sections larger than $240 \mathrm{~mm}^{2}$ and according to DIN 46235 for conductor cross-sections larger than $185 \mathrm{~mm}^{2}$, the 3RT1966-4EA1 terminal cover is required to maintain the phase clearance, see page $3 / 119$.

Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

Type		$\begin{aligned} & \text { 3RT1481- } \\ & \text { 6A. } 36 \end{aligned}$	$\begin{aligned} & \text { 3RT1482- } \\ & \text { 6A. } 36 \end{aligned}$	3RT1483- 6AP36	3RT1485- 6AP36	3RT14866AP36	$\begin{aligned} & \text { 3RT1487- } \\ & \text { 6AP36 } \end{aligned}$
General data							
Dimensions - Width - Height - Depth	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 285 \\ & 352 \\ & 250 \end{aligned}$			$\begin{aligned} & 431 \\ & 403 \\ & 246 \end{aligned}$		
Mounting position		For vertical mounting surface can be rotated $\pm 30^{\circ}$, for vertical mounting surface can be tilted $\pm 30^{\circ}$ forward or backward					
Installation altitude at height above sea level, maximum	m	2000					
Insulation voltage at pollution degree 3		$\begin{aligned} & 1000 \\ & 600 \\ & \hline \end{aligned}$					
- of the main circuit - of the auxiliary circuit	$\begin{aligned} & V \\ & V \end{aligned}$						
Impulse withstand voltage							
- of the main circuit - of the auxiliary circuit	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$					
Product function, mirror contact according to IEC 60947-4-1		Yes					
Ambient temperature							
- During operation - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+55 \\ & -40 \ldots+80 \end{aligned}$					
Degree of protection IP on the front acc. to IEC 60529		IP00					
Short-circuit protection							
Version of the fuse link required							
- For short-circuit protection of the main circuit for type of coordination "2"		$\begin{aligned} & \text { aR: } 1000 \mathrm{~A} \\ & (1000 \mathrm{~V}, \\ & 30 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { aR: } 1100 \mathrm{~A} \\ & (1000 \mathrm{~V}, \\ & 42 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { aR: } 1400 \mathrm{~A} \\ & (1000 \mathrm{~V}, \\ & 42 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { aR: } 2200 \mathrm{~A} \\ & (1000 \mathrm{~V}, \\ & 42 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { aR: } 2500 \mathrm{~A} \\ & (1000 \mathrm{~V}, \\ & 42 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { aR: } 2800 \mathrm{~A} \\ & (1000 \mathrm{~V}, \\ & 50 \mathrm{kA}) \end{aligned}$
- For short-circuit protection of the auxiliary switch		gG: $16 \mathrm{~A}(600 \mathrm{~V}, 1 \mathrm{kA})$					

Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

Selection and ordering data

Size S3: AC operation \sim or $A C / D C$ operation \sim

- Coil circuits (varistors, diodes, etc.) retrofittable
- Auxiliary switches can be retrofitted
- Main and control conductors: Screw terminals

3RT244.-1... 0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{Size} \& \multicolumn{2}{|l|}{} \& \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multirow[t]{6}{*}{SD

d} \& Screw term \& \multirow[t]{4}{*}{} \& \multirow[t]{6}{*}{| PU |
| :--- |
| (UNIT, SET, M) |} \& \multirow[t]{6}{*}{PS*} \& \multirow[t]{6}{*}{PG}

\hline \& \multicolumn{7}{|l|}{\multirow[t]{5}{*}{}} \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& Article No. \& Price per PU \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

For screw fixing and snap-on mounting onto TH 35-15 and TH 75-15 standard mounting rails

AC operation												
S3	140	130	11	1	1	24	--	5	3RT2446-1AB00	1	1 unit	41B
						110	--	5	3RT2446-1AF00	1	1 unit	41B
						230	--	2	3RT2446-1AP00	1	1 unit	41B
	160	140	11	1	1	24	--	5	3RT2448-1AB00	1	1 unit	41B
						110	--	10	3RT2448-1AF00	1	1 unit	41B
						230	--	5	3RT2448-1AP00	1	1 unit	41B

AC/DC operation

With integrated coil circuit (varistor integrated in electronics at the factory)

Other voltages according to page $4 / 53$ on request.
Accessories and spare parts, see page 3/77 onwards.

Sizes S 6 to S12: AC/DC operation \sim

- 3RT14...-A standard operating mechanism
- Solid-state operating mechanism
- 3RT14..-.N with 24 V DC control signal input
- 3RT14...-. P with 24 V DC control signal input and remaining lifetime indicator (RLT)
- For screw fixing
- Auxiliary and control conductors: Screw terminals
- Main conductors: Busbar connections; a connection kit with screws, spring washers and nuts is enclosed.

Solid-state operating mechanism
With 24 V DC control signal input
e.g. for control by PLC

With integrated coil circuit (varistor integrated in electronics at the factory)

S6	275	250	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1456-6NF36 3RT1456-6NP36	1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
S10	400	380	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1466-6NF36 3RT1466-6NP36	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	500	450	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1467-6NF36 3RT1467-6NP36	1	1 unit 1 unit	$\begin{aligned} & \text { 41B } \\ & 41 B \end{aligned}$
S12	690	650	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	5 2	3RT1476-6NF36 3RT1476-6NP36	1	1 unit	$\begin{aligned} & \hline 41 B \\ & 41 B \end{aligned}$

With 24 V DC control signal input • with remaining lifetime indicator (RLT)
e.g. for control by PLC

With integrated coil circuit (varistor integrated in electronics at the factory)

S6	275	250	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	3RT1456-6PF35 3RT1456-6PP35	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
S10	400	380	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 20 \\ & 5 \end{aligned}$	3RT1466-6PF35 3RT1466-6PP35	1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & \text { 41B } \\ & 41 \mathrm{~B} \end{aligned}$
	500	450	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1467-6PF35 3RT1467-6PP35	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
S12	690	650	1	1	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 20 \end{aligned}$	3RT1476-6PF35 3RT1476-6PP35	1	$1 \text { unit }$ $1 \text { unit }$	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$

Other voltages according to page 4/54 on request.
Accessories and spare parts, see page 3/77 onwards.

Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A

Sizes S6 to S12: AC/DC operation \approx

- Solid-state operating mechanism with fail-safe control input for safety-related applications to SIL CL 3
- 24 V DC control signal input, e.g. for control via the fail-safe output module of a controller (F-PLC) or safety relay
- Attainable Safety Integrity Level (SIL):
- With one contactor: SIL CL 2 acc. to IEC 62061 or PL c acc. to ISO 13849-1
- With two contactors in series: SIL CL 3 acc. to IEC 62061 or PL e acc. to ISO 13849-1
- Version with removable lateral auxiliary switches or permanently mounted auxiliary switches
- For screw fixing
- Auxiliary and control conductors: Screw terminals
- Main conductors: Busbar connections; a connection kit with screws, spring washers and nuts is enclosed.

For more information on safety systems, see page 11/1 onwards.

Solid-state operating mechanism
With two removable laterally mounted auxiliary switches
With integrated coil circuit (varistor integrated in electronics at the factory)

S6	275	250	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1456-6SF36 } \\ & \text { 3RT1456-6SP36 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
S10	400	380	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 20 \\ & 5 \end{aligned}$	3RT1466-6SF36 3RT1466-6SP36	1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
	500	450	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1467-6SF36 } \\ & \text { 3RT1467-6SP36 } \end{aligned}$	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
S12	690	650	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1476-6SF36 } \\ & \text { 3RT1476-6SP36 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & \hline 41 B \\ & 41 B \end{aligned}$

With two permanently laterally mounted auxiliary switches
With integrated coil circuit (varistor integrated in electronics at the factory)

S6	275	250	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 20 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT1456-6SF36-3PA0 } \\ & \text { 3RT1456-6SP36-3PA0 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
S10	400	380	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots .277 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	3RT1466-6SF36-3PA0 3RT1466-6SP36-3PA0	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
	500	450	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1467-6SF36-3PA0 3RT1467-6SP36-3PA0	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
S12	690	650	2	2	$\begin{aligned} & 96 \ldots 127 \\ & 200 \ldots 277 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { 3RT1476-6SF36-3PAO } \\ & \text { 3RT1476-6SP36-3PA0 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$

Accessories and spare parts, see page 3/77 onwards.

AC/DC operation \sim

- Solid-state operating mechanism
- Version with two laterally mounted auxiliary switches (2 NO +2 NC each)
- For screw fixing
- Auxiliary and control conductors: Screw terminals
- Main conductors: Busbar connections

3RT1481-6A.36, 3RT1482-6A. 36

3RT1483-6AP36

3RT1485-6AP36, 3RT1486-6AP36

3RT1487-6AP36

Rated data according to IEC 60947-4-1 AC-1, $t_{u}: 40^{\circ} \mathrm{C}$	Auxiliary contacts, lateral Version	Rated control supply voltage U_{S}			Busbar connections	\circ	PU (UNIT, SET, M)	PS*	PG
		$50 / 60 \mathrm{~Hz} \mathrm{AC}$	DC						
```Operational current Ie up to 1000 V```	$1 \quad 4$				Article No.	Price per PU			
A	NO NC	V	V	d					

Solid-state operating mechanism

## With integrated coil circuit

900	2	2	$\begin{aligned} & 100 \ldots 127 \\ & 200 \ldots 240 \end{aligned}$	$\begin{aligned} & 100 \ldots 110 \\ & 200 \ldots . .220 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT1481-6AF36 3RT1481-6AP36	1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
1050	2	2	$100 . . .127$	100 ... 110	5	3RT1482-6AF36	1	1 unit	41B
			200... 240	200... 220	5	3RT1482-6AP36	1	1 unit	41B
1260	2	2	$100 \ldots 240$	100 ... 220	5	3RT1483-6AP36	1	1 unit	41B
1700	2	2	$100 \ldots 240$	$100 \ldots 220$	5	3RT1485-6AP36	1	1 unit	41B
2100	2	2	$100 \ldots 240$	100 ... 220	5	3RT1486-6AP36	1	1 unit	41B
2650	2	2	$100 . . .240$	100 ... 220	5	3RT1487-6AP36	1	1 unit	41B

Accessories, see next table; spare parts, see page 4/21.

## Accessories

Overviews graphics for 3RT148 contactors with mountable accessories, see page 4/9.

## More information

Manuals, see
https://support.industry.siemens.com/cs/ww/en/ps/24229/man


## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

SIRIUS 3RT. 4 contactors for weak or non-inductive loads (AC-1), 3-pole up to 2650 A NFM


Overview


3RT231 to 3RT234 and 3RT135 to 3RT137 contactors, with screw terminals

## Standards

IEC/EN 60947-1, IEC/EN 60947-4-1, IEC/EN 60947-5-1 (auxiliary switches)
Sizes S00 to S3
The 3RT23 contactors have two auxiliary contacts with 1 NO and 1 NC.
Sizes S6 to S12
The 3RT13 contactors have four auxiliary contacts with 2 NO and 2 NC.

## Connection methods

Main circuit

- Sizes S00 and S0: screw or spring-loaded terminals, springloaded terminals with convenient plug-in design for device connectors
- Sizes S2 and S3: screw terminals with box terminal; direct connection to the connecting bar possible with cable lugs for S3 when the box terminal is removed.
- Sizes S6 to S12: screw terminals with connecting bars that the cables can be connected to using either cable lugs or flexible or rigid busbars. Sizes S10 and S12 can be fitted with bus connectors offset, see page 4/37.
Auxiliary/control circuit
- Sizes S00 to S3: Screw or spring-loaded terminals
- Sizes S6 to S12: Screw terminals


## Operating mechanism types

## Sizes S00 to S3

3RT23 contactors are available as versions with conventional AC or DC operating mechanisms or as versions with a wide-range solid-state operating mechanism and a universal actuating voltage (AC or DC operation possible).
Control takes place via the control supply voltage connection A1 - A2 with varying operating ranges (see relevant product data sheet for further details).
Sizes S6 to S12
The 3RT13 contactors are fitted with a wide-range solid-state operating mechanism that can be controlled with both $50 / 60 \mathrm{~Hz} \mathrm{AC}$ and DC.

The operating range of the DC control is $0.8 \times U_{s}$ min and $1.1 \times U_{\text {s max }}$, and for AC operation $0.85 \times U_{s}$ min and $1.1 \times U_{s}$ max .
It is not possible to change the operating mechanism.

## Mounting of additional auxiliary contacts

Size S00
Four auxiliary contacts, including no more than three NC
Sizes SO to S3
Four additional auxiliary contacts, including no more than two NC
Sizes S6 to S12
One additional auxiliary switch with $1 \mathrm{NO}+1 \mathrm{NC}$ can be mounted on each side.

## Accessories and spare parts

- Sizes S00 to S3, see page 3/77 onwards
- Sizes S6 to S12, see page 4/37


## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

## SIRIUS 3RT. 3 contactors, 4-pole up to 525 A

## 3RT135 to 3RT137 contactors,

sizes S6 to S12 with mountable accessories


3RT135 to 3RT137 contactors with mountable accessories

# Switching devices - Contactors and contactor assemblies - Special applications 

## Contactors for special applications

SIRIUS 3RT. 3 contactors, 4-pole up to 525 A

## Application

The 3RT. 3 contactors can be used for the following applications:

- 4-pole switching of weak or non-inductive loads (AC-1)
- Disconnecting loads or power generation plants from the grid
- For system transfers

We additionally offer special versions of the 3RT23 contactors for switching motor-driven loads (AC-3).

## Technical specifications

## More information

Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/16165/td
Manuals, see

FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16165/faq
https://support. industry.siemens.com/cs/ww/en/ps/16165/man

Type   Size			3RT2316, 3RT2317 S00	3RT2325 to 3RT2327   SO	3RT2336, 3RT2337 S2	3RT2344, 3RT2346, 3RT2348 S3
General data						
Dimensions (W x H x D)   AC or DC operation   - Basic units   - Screw terminals   - Spring-loaded terminals   - Basic unit with mounted auxiliary switch   - Screw terminals   - Spring-loaded terminals   - Basic unit with mounted function module or solid-state time-delayed auxiliary switch - Screw terminals   - Spring-loaded terminals		mm   mm   mm   mm   mm   mm	$\begin{aligned} & 45 \times 58 \times 73 \\ & 45 \times 70 \times 73 \\ & \\ & 45 \times 58 \times 117 \\ & 45 \times 70 \times 121 \end{aligned}$ $\begin{aligned} & 45 \times 58 \times 147 \\ & 45 \times 70 \times 147 \end{aligned}$	(The values in brackets apply for DC operation) $\begin{aligned} & 60 \times 85 \times 97(107) \\ & 61 \times 102 \times 97(107) \end{aligned}$ $\begin{aligned} & 60 \times 85 \times 141(151) \\ & 61 \times 102 \times 145(155) \end{aligned}$ $\begin{aligned} & 60 \times 85 \times 171(181) \\ & 61 \times 102 \times 171(181) \end{aligned}$	$\begin{aligned} & 75 \times 114 \times 130 \\ & -- \\ & 75 \times 114 \times 174 \\ & -- \\ & 75 \times 114 \times 204 \end{aligned}$ --	$\begin{aligned} & 96 \times 140 \times 152 \\ & -- \\ & 96 \times 140 \times 196 \\ & -- \\ & 96 \times 140 \times 226 \end{aligned}$

## Permissible mounting position

The contactors are designed for operation on a vertical mounting surface.


# Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications 

SIRIUS 3RT. 3 contactors, 4 -pole up to 525 A

Type Size	3RT2316, 3RT2317 SOO	$\begin{aligned} & \text { 3RT2325, 3RT2326 } \\ & \text { S0 } \end{aligned}$	3RT2326-1...0-4AA0	3RT2327
Short-circuit protection				
- Version of the fuse link required for short-circuit protection of the main circuit				
- for type of coordination "1"	$\begin{aligned} & \text { gG: } 35 \text { A } \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gG: } 63 \text { A } \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gG: } 100 \mathrm{~A}(690 \mathrm{~V}, 100 \mathrm{kA}) \text {, } \\ & \text { aM: } 50 \mathrm{~A}(690 \mathrm{~V}, 100 \mathrm{kA}) \\ & \text { BS88: } 100 \mathrm{~A}(415 \mathrm{~V}, 80 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gG: } 63 \mathrm{~A} \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$
- for type of coordination "2"	$\begin{aligned} & \text { gG: } 20 \text { A } \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$		gG: $35 \mathrm{~A}(690 \mathrm{~V}, 100 \mathrm{kA})$, aM: $20 \mathrm{~A}(690 \mathrm{~V}, 100 \mathrm{kA})$, BS88: 35 A (415 V, 80 kA )	$\begin{aligned} & \text { gG: } 20 \mathrm{~A} \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$
Auxiliary circuit				
- Version of the fuse link required for short-circuit protection of the auxiliary switch	Fuse gG: $10 \mathrm{~A}(690$	1 kA )		
- Miniature circuit breaker version required for short-circuit protection of the auxiliary switch	6 A (230 V, 400 A, C	haracteristic)		


Type	3RT2336, 3RT2337		3RT2344, 3RT2346	3RT2346-1..0-4AA0	3RT2348
Size	S2		S3		
Short-circuit protection					
Main circuit					
- Version of the fuse link required for short-circuit protection of the main circuit					
- for type of coordination "1"	$\begin{aligned} & \text { gG: } 160 \mathrm{~A} \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$		$\begin{aligned} & \text { gG: } 250 \text { A } \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$	gG: $250 \mathrm{~A}(690 \mathrm{~V}, 100 \mathrm{kA})$, aM: 160 A ( 690 V, 100 kA ), BS88: 200 A (415 V, 80 kA )	$\begin{aligned} & \text { gG: } 250 \mathrm{~A} \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$
- for type of coordination "2"	$\begin{aligned} & \text { gG: } 63 \mathrm{~A} \\ & (690 \mathrm{~V}, \\ & 100 \mathrm{kA}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { gR: } 80 \text { A } \\ & (690 \mathrm{~V}, \\ & 100 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gR: } 250 \mathrm{~A} \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gG: } 160 \mathrm{~A}(690 \mathrm{~V}, 100 \mathrm{kA}) \text {, } \\ & \text { aM: } 100 \mathrm{~A}(690 \mathrm{~V}, 100 \mathrm{kA}) \text {, } \\ & \text { BS88: } 125 \mathrm{~A}(415 \mathrm{~V}, 80 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gR: } 250 \mathrm{~A} \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$
Auxiliary circuit					
- Version of the fuse link required for short-circuit protection of the auxiliary switch	Fuse gG:	A (690 V,			
- Miniature circuit breaker version required for short-circuit protection of the auxiliary switch	6 A (230 V	$400 \mathrm{~A}, \mathrm{C}$ ch	acteristic)		



## (closing = closed)

Operating times for $0.8 \ldots 1.1 \times U_{s}{ }^{2}{ }^{2}$
Total break time $=$ Opening delay +
Arcing time

- AC operation
- Closing delay
- Opening delay
- DC operation
- Closing delay
- Opening delay
- AC/DC operation
- Closing delay
- Opening delay
- Arcing time

ms	$8 \ldots 35$	8... 33	9... 38	8 ... 40	$10 . .88$	13... 50
ms	$3.5 \ldots 14$	$4 \ldots 15$	$4 \ldots 16$	$4 \ldots 16$	$10 . .18$	$10 . .21$
ms	30 ... 100		50 ... 170		--	
ms	$7 \ldots 13$		15 ... 17.5		--	
ms	--				$35 . .110$	$50 . .70$
ms	--				$30 . .55$	$38 . .57$
ms	$10 . .15$		10		$10 . .20$	

1) In the case of $A C / D C$ coils, increased pickup currents ( 6.5 A on average) arise during the first 200 ms .
2) With size $\mathrm{SOO}, \mathrm{DC}$ operation: Operating times at 0.85 to $1.1 \times U_{\mathrm{S}}$.

# Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications 

SIRIUS 3RT. 3 contactors, 4-pole up to 525 A

Type	3RT2316	3RT2317	3RT2325	3RT2326	3RT2327	3RT2336	3RT2337	3RT2344	3RT2346
Size									

## Rated data of the main contacts

Load rating with AC
Utilization category AC-1

- Rated operational currents $I_{\mathrm{e}}$	At $40^{\circ} \mathrm{C}$, up to 690 V   At $60^{\circ} \mathrm{C}$, up to 690 V	A A	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	22 20	35 30	40 35	50 42	60 55	110 95	110 100	$\begin{aligned} & 140 \\ & (110)^{1)} \\ & 130 \\ & (100)^{1)} \end{aligned}$	160 140
- Rated power for AC loads P.f. $=0.95$ (at $60^{\circ} \mathrm{C}$ )	$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 6 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 13 \end{aligned}$	$\begin{aligned} & 11 \\ & 20 \end{aligned}$	$\begin{aligned} & 13 \\ & 23 \end{aligned}$	$\begin{aligned} & 16 \\ & 28 \end{aligned}$	$\begin{aligned} & 21 \\ & 36 \end{aligned}$	$\begin{aligned} & 36 \\ & 63 \end{aligned}$	$\begin{aligned} & 38 \\ & 72 \end{aligned}$	$\begin{aligned} & 49 \\ & 92 \end{aligned}$	$\begin{aligned} & 53 \\ & 105 \end{aligned}$
- Minimum cross-section in the main circuit at maximum AC-1 rated value		$\mathrm{mm}^{2}$	2.5	4	10			16	35		$50(35)^{1)}$	70
Utilization categories AC-2 and AC-3												
- Rated operational currents $I_{\mathrm{e}}$ (at $60^{\circ} \mathrm{C}$ )	At 400 V   At 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	9	12	15.5	$\begin{aligned} & 15.5(32)^{1)} \\ & --(21)^{11} \end{aligned}$		$\begin{aligned} & 38(50)^{1)} \\ & --(24)^{1)} \end{aligned}$	38		$\begin{aligned} & -(95)^{1)} \\ & --(58)^{1)} \end{aligned}$	--
- Rated power for slipring or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$ kW	$\begin{aligned} & 2.2 \\ & 4 \\ & -- \end{aligned}$	$\begin{aligned} & 3 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 4(7.5)^{1)} \\ & 7.5(15)^{11} \\ & --(18.5)^{1)} \end{aligned}$	$\begin{aligned} & 4 \\ & 7.5 \end{aligned}$	$\begin{aligned} & -(15)^{1)} \\ & -(22)^{11} \\ & --(22)^{1)} \end{aligned}$	--		$\begin{aligned} & -(22)^{1)} \\ & -(45)^{1)} \\ & --(55)^{1)} \end{aligned}$	--

## Load rating with DC

## Utilization category DC-1 ( $L / R \leq 1 \mathrm{~ms}$ )

- Rated operational currents $I_{\mathrm{e}}$ (at $60^{\circ} \mathrm{C}$ )

- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 2.1 \\ & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & \\ & 4.5 \\ & 1 \\ & 0.4 \end{aligned}$	35	42	$\begin{aligned} & 55 \\ & 23 \end{aligned}$		70	$\begin{aligned} & 80 \\ & 60 \\ & 9 \\ & 2 \\ & 0.6 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	A   A   A   A   A	$\begin{aligned} & 16 \\ & 16 \\ & 12 \\ & 1.6 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 45 \\ & 5 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 10 \\ & 1.8 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \\ & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 55 \\ & 45 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 4.5 \end{aligned}$
- 4 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ \hline \end{array}$	A   A   A   A   A	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 2.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \\ & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & \\ & 55 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \\ & 2.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 4.5 \\ & \hline \end{aligned}$
Utilization category DC-3/DC-5, shunt-wound and series-wound motors ( $L / R \leq 15 \mathrm{~ms}$ )											
-Rated operational currents $I_{\mathrm{e}}$ (at $60^{\circ} \mathrm{C}$ )											
- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 0.5 \\ & 0.15 \\ & -- \\ & -- \end{aligned}$	20	$\begin{aligned} & 5 \\ & 2.5 \\ & 1 \\ & 0.09 \end{aligned}$			0.1		6 0.15	6.5
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	A   A   A   A   A	$\begin{aligned} & 16 \\ & 5 \\ & 0.35 \\ & -- \\ & -- \end{aligned}$	20	$\begin{aligned} & 30 \\ & 30 \\ & 15 \\ & 3 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 25 \\ & 5 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 7 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 1.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 10 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 25 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 35 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$
- 4 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 1.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \\ & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 25 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$

[^36]
## Data for North America

For technical specifications of 3RT contactors, see page 3/53 onwards.


# Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications 

SIRIUS 3RT. 3 contactors, 4 -pole up to 525 A

Type		3RT1373-				3RT1374-				3RT1375-			
		6AE36	6AF36	6AP36	6AR36	6AE36	6AF36	6AP36	6AR36	6AE36	6AF36	6AP36	6AR36
Size		S12											
Control circuit/control													
Operating range factor of the control supply voltage, rated value of the solenoid coil													
- At AC at 50 Hz   - At AC at 60 Hz   - At DC		$\begin{array}{lll} 0.85 & \ldots & 1.1 \\ 0.85 & \ldots & 1.1 \\ 0.8 & \ldots & 1.1 \end{array}$											
Solenoid coil closing for DC	W	400	360	410	600	400	360	410	600	400	360	410	600
Closing apparent power of the solenoid coil for AC													
- At 50 Hz   - At 60 Hz	$\begin{aligned} & \text { VA } \\ & \text { VA } \end{aligned}$	$\begin{aligned} & 475 \\ & 475 \end{aligned}$	$\begin{aligned} & 340 \\ & 340 \end{aligned}$	$\begin{aligned} & 385 \\ & 385 \end{aligned}$	$\begin{aligned} & 420 \\ & 420 \end{aligned}$	$\begin{aligned} & 475 \\ & 475 \end{aligned}$	$\begin{aligned} & 340 \\ & 340 \end{aligned}$	$\begin{aligned} & 385 \\ & 385 \end{aligned}$	$\begin{aligned} & 420 \\ & 420 \end{aligned}$	$\begin{aligned} & 475 \\ & 475 \end{aligned}$	$\begin{aligned} & 340 \\ & 340 \end{aligned}$	$\begin{aligned} & 385 \\ & 385 \end{aligned}$	$\begin{aligned} & 420 \\ & 420 \end{aligned}$
Solenoid coil closed for DC	W	3.5	2.5	4.5	4.7	3.5	2.5	4.5	4.7	3.5	2.5	4.5	4.7
Closed apparent power of the solenoid coil for AC													
- At 50 Hz   - At 60 Hz	$\begin{aligned} & \text { VA } \\ & \text { VA } \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$
Closing delay													
- At AC   - At DC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 30 \ldots 60 \\ & 30 \ldots 60 \end{aligned}$											
Opening delay													
- At AC   - At DC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 45 \ldots 80 \\ & 45 \ldots 80 \end{aligned}$											
Main circuit													
Operating current at AC-1   - Up to 690 V													
- At an ambient temperature of $40^{\circ} \mathrm{C}$   - At an ambient temperature of $60^{\circ} \mathrm{C}$	$\begin{aligned} & A \\ & A \end{aligned}$	$\begin{aligned} & 400 \\ & 350 \end{aligned}$				$\begin{aligned} & 500 \\ & 400 \end{aligned}$				$\begin{aligned} & 525 \\ & 425 \end{aligned}$			
- Up to 1000 V													
- At an ambient temperature of $40^{\circ} \mathrm{C}$	A	350				375				400			
- At an ambient temperature of $60^{\circ} \mathrm{C}$	A	300				325				350			
No-load switching frequency													
- At AC   - At DC	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$											
Type		$\begin{aligned} & \text { 3RT1355- } \\ & \text { 6A. } 36 \end{aligned}$		$\begin{aligned} & \text { 3RT1363- } \\ & \text { 6A. } 36 \end{aligned}$		$\begin{aligned} & \text { 3RT1364- } \\ & \text { 6A. } 36 \end{aligned}$		$\begin{aligned} & \text { 3RT1373- } \\ & \text { 6A. } 36 \end{aligned}$		$\begin{aligned} & \text { 3RT1374- } \\ & \text { 6A. } 36 \end{aligned}$		$\begin{aligned} & \text { 3RT1375- } \\ & \text { 6A. } 36 \end{aligned}$	
Size		S8		S10				S12					
Conductor cross-sections													
Type of electrical connection for the main circuit		Connecting bar				Connecting bar, bus connectors offset > 275 A required		Connecting bar		Connecting bar, bus connectors offset $>450 \mathrm{~A}$ required			
Minimum cross-section in the main circuit at maximum $\mathrm{AC}-1$ rated value	$\mathrm{mm}^{2}$	95		150		240				300		370	

Selection and ordering data
AC operation $\sim$

$\mathrm{PU}($ UNIT, SET, M)	$=1$
$\mathrm{PS}^{*}$	$=1$ unit
PG	$=41 \mathrm{~B}$



3RT231.-1A. 00


3RT231.-2A. 00


3RT233.-1A. 00


3RT234.-1A. 00


For screw fixing and snap-on mounting onto TH 35 standard mounting rail
Size SOO

18/16	--	--	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	$\begin{aligned} & -- \\ & -- \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 2 \\ & \hline \end{aligned}$	3RT2316-1AB00 3RT2316-1AF00 3RT2316-1AP00	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2316-2AB00 3RT2316-2AF00 3RT2316-2AP00
22 / 20	--	--	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	--	2 5	$\begin{aligned} & \text { 3RT2317-1AB00 } \\ & \text { 3RT2317-1AF00 } \\ & \text { 3RT2317-1AP00 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2317-2AB00 } \\ & \text { 3RT2317-2AFO0 } \\ & \text { 3RT2317-2AP00 } \end{aligned}$
$\begin{aligned} & \text { Size S0 } \\ & 35 / 30^{1)} \end{aligned}$	11	1	1	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 5 5	3RT2325-1AB00 3RT2325-1AF00 3RT2325-1AP00	$\begin{aligned} & 5 \\ & x \\ & 2 \end{aligned}$	3RT2325-2AB00 3RT2325-2AF00 3RT2325-2AP00
40/35 ${ }^{1)}$	11	1	1	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 5 2	3RT2326-1AB00 3RT2326-1AF00 3RT2326-1AP00	$\begin{aligned} & 5 \\ & x \\ & 2 \end{aligned}$	3RT2326-2AB00 3RT2326-2AF00 3RT2326-2AP00
$50 / 42^{1)}$	11	1	1		$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 5 2	$\begin{aligned} & \text { 3RT2327-1AB00 } \\ & \text { 3RT2327-1AF00 } \\ & \text { 3RT2327-1APOO } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT2327-2AB00 } \\ & \text { 3RT2327-2AF00 } \\ & \text { 3RT2327-2AP00 } \end{aligned}$
$\begin{aligned} & \text { Size S2 } \\ & 60 / 55 \end{aligned}$	11	1	1		$\begin{aligned} & 24 \\ & 110 \\ & 230 \\ & \hline \end{aligned}$	5   5	$\begin{aligned} & \text { 3RT2336-1AB00 } \\ & \text { 3RT2336-1AF00 } \\ & \text { 3RT2336-1AP00 } \end{aligned}$		--
110 / 95	11	1	1		$\begin{aligned} & \hline 24 \\ & 110 \\ & 230 \end{aligned}$	5 5	3RT2337-1AB00 3RT2337-1AF00 3RT2337-1AP00		--

For screw fixing and snap-on mounting onto TH 35-15 and TH 75-15 standard mounting rails

## Size S3

110 / 100	11	1	1	--	24	5	3RT2344-1AB00	--
					110	5	3RT2344-1AF00	--
				--	230	2	3RT2344-1AP00	--
140 / 130	11	1	1	--	24	5	3RT2346-1AB00	--
				--	110	5	3RT2346-1AF00	--
				--	230	2	3RT2346-1AP00	--
160 / 140	11	1	1	--	24	5	3RT2348-1AB00	--
				--	110	5	3RT2348-1AF00	--
				--	230	5	3RT2348-1AP00	--

1) Required conductor cross-section $10 \mathrm{~mm}^{2}$.

Other voltages according to page $4 / 53$ on request.
Accessories and spare parts, see page 3/77 onwards.

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

## SIRIUS 3RT. 3 contactors, 4 -pole up to 525 A

## AC operation $\sim$

Version for AC-3 motor loads

```
PU (UNIT, SET, M) = 1
PS* = 1 unit
PG = 41B
```



3RT2326-1AP00-4AA0


3RT2336-1AP00-4AA0


3RT2346-1AP00-4AAO

Rated data		Auxiliary contacts		Rated control supply voltage $U_{S}$   50 Hz AC	SD	Screw terminals	$\bigoplus$	SD	Spring-loaded terminals	00
AC-2/AC-3,   $t_{u}$ : Up to $60^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{AC}-1, \\ & t_{\mathrm{u}}: 40^{\prime} / 60^{\circ} \mathrm{C} \end{aligned}$									
Operational current $I_{\mathrm{e}}$ up to	Operational current $I_{\mathrm{e}}$ up to	Ident. No	Version							
						Article No.	Price per PU		Article No.	Price per PU
400 V	690 V									
A	A		NO N	V	d			d		

For screw fixing and snap-on mounting onto TH 35 standard mounting rail

## Size SO

| 32 | $40 / 35$ | $\mathbf{1 1}$ | 1 | 1 | 230 | 5 | 3RT2326-1AP00-4AAO | -- |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Size S2 $60 / 55$ $\mathbf{1 1}$ 1 1 230 5 | 3RT2336-1AP00-4AAO | -- |  |  |  |  |  |  |

For screw fixing and snap-on mounting onto TH 35-15 and

## TH 75-15 standard mounting rails

## Size S3

95	$110 / 100$	11	1	1	230	5	3RT2346-1AP00-4AAO

Other voltages according to page 4/53 on request
Accessories and spare parts, see page 3/77 onwards.

## DC operation =-=

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS*	$=41 \mathrm{~B}$



3RT231.-1B. 40


3RT231.-2B. 40


3RT232.-1B. 40

Rated data AC-1,
$t_{u}: 40 / 60^{\circ} \mathrm{C}$
Operational current $I_{\mathrm{e}}$ up to
690 V
A NO NC V V mounting rail
Size S00

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $18 / 16$ | -- | -- | -- | 24 | 2 | 3RT2316-1BB40 | 3RT2316-2BB40 |  |
|  |  |  |  | 220 | 5 | 3RT2316-1BM40 | 5 | 3RT2316-2BM40 |
| $22 / 20$ | -- | -- | -- | 24 | 5 | 3RT2317-1BB40 |  | 3RT2317-2BB40 |
|  |  |  |  | 220 | 5 | 3RT2317-1BM40 | 5 | 3RT2317-2BM40 |

Size SO

$35 / 30^{1)}$	11	1	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	3RT2325-1BB40 3RT2325-1BM40	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	3RT2325-2BB40 3RT2325-2BM40
40/351)	11	1	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	2 5	3RT2326-1BB40 3RT2326-1BM40	$\begin{aligned} & 2 \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { 3RT2326-2BB40 } \\ & \text { 3RT2326-2BM40 } \end{aligned}$
50/42 ${ }^{1)}$	11	1	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	2 5	$\begin{aligned} & \text { 3RT2327-1BB40 } \\ & \text { 3RT2327-1BM40 } \end{aligned}$	$\begin{aligned} & 2 \\ & x \end{aligned}$	$\begin{aligned} & \text { 3RT2327-2BB40 } \\ & \text { 3RT2327-2BM40 } \end{aligned}$

[^37]Other voltages according to page $4 / 53$ on request.
Accessories and spare parts, see page 3/77 onwards.

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

## SIRIUS 3RT. 3 contactors, 4 -pole up to 525 A

## AC/DC operation $\simeq$

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS	$=41 \mathrm{~B}$



For screw fixing and snap-on mounting onto TH 35 standard
mounting rail
Size S2
With integrated coil circuit
(varistor integrated in electronics at the factory)

$60 / 55$	11	1	1	$20 \ldots 33$	2	3RT2336-1NB30		
$110 / 95$		11	1	1	$20 \ldots 33$	5	3RT2336-1NP30	-

For screw fixing and snap-on mounting onto TH 35-15 and TH 75-15
standard mounting rails

## Size S3

With integrated coil circuit
(varistor integrated in electronics at the factory)

110/100	11	1	1	$\begin{aligned} & 20 \ldots 33 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & x \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2344-1NB30 } \\ & \text { 3RT2344-1NP30 } \end{aligned}$	--
140 / 130	11	1	1	$\begin{aligned} & 20 \ldots 33 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2346-1NB30 } \\ & \text { 3RT2346-1NP30 } \end{aligned}$	--
160 / 140	11	1	1	$\begin{aligned} & 20 \ldots 33 \\ & 175 \ldots 280 \end{aligned}$	5 5	$\begin{aligned} & \hline \text { 3RT2348-1NB30 } \\ & \text { 3RT2348-1NP30 } \end{aligned}$	--

Other voltages according to page 4/53 on request
Accessories and spare parts, see page 3/77 onwards,

## AC/DC operation $\simeq$

Version for AC-3 motor loads

$\mathrm{PU}(\mathrm{UNIT}, \mathrm{SET}, \mathrm{M})$	$=1$
$\mathrm{PS}^{\star}$	$=1$ unit
PG	
	$=41 \mathrm{~B}$




For screw fixing and snap-on mounting onto TH 35 standard
mounting rail

## Size S2

With integrated coil circuit
(varistor integrated in electronics at the factory)
60 / 55
11
20 ... 33
For screw fixing and snap-on mounting onto TH 35-15 and

2 3RT2336-1NB30-4AAO

TH 75-15 standard mounting rails

## Size S3

With integrated coil circuit
(varistor integrated in electronics at the factory)
95 110/100 11 1 20 ... 33
5
3RT2346-1NB30-4AAO

Other voltages according to page 4/53 on request.
Accessories and spare parts, see page 3/77 onwards.

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

## SIRIUS 3RT. 3 contactors, 4 -pole up to 525 A

## Sizes S6 to S12: AC/DC operation $\simeq$

- Solid-state operating mechanism
- Version with two laterally mounted auxiliary switches (2 NO + 2 NC each)
- For screw fixing
- Auxiliary and control circuits: Screw terminals
- Main conductors: Busbar connections; a connection kit is enclosed.


3RT1363-6A. 36


3RT1373-6A. 36

3RT1355-6A. 36

Size $\quad$\begin{tabular}{l}
Rated data <br>
<br>
<br>
<br>

Operational $1, t_{\mathrm{u}}: 40^{\circ} \mathrm{C}$
current $I_{\mathrm{e}}$
at 690 V

<br>
\end{tabular}

$\frac{\mathrm{A}}{\mathrm{NO}}$

With integrated coil circuit (varistor integrated in electronics at the factory)

S6	200	2	2	$24 . . .60$	$20 . . .60$	20	3RT1355-6AE36	1	1 unit	41B
				48 ... 130	48 ... 130	20	3RT1355-6AF36	1	1 unit	41B
				$100 . . .250$	$100 . . .250$	20	3RT1355-6AP36	1	1 unit	41B
				250... 500	250... 500	20	3RT1355-6AR36	1	1 unit	41B
S10	275	2	2	24 ... 60	$20 . . .60$	20	3RT1363-6AE36	1	1 unit	41B
				48 ... 130	$48 . .130$	20	3RT1363-6AF36	1	1 unit	41B
				$100 . . .250$	$100 . .250$	20	3RT1363-6AP36	1	1 unit	41B
				250 ... 500	250... 500	20	3RT1363-6AR36	1	1 unit	41B
	350	2	2	$24 \ldots 60$	$20 . . .60$	20	3RT1364-6AE36	1	1 unit	41B
				48 ... 130	$48 . .130$	20	3RT1364-6AF36	1	1 unit	41B
				$100 . .250$	$100 . . .250$	20	3RT1364-6AP36	1	1 unit	41B
				250... 500	250... 500	20	3RT1364-6AR36	1	1 unit	41B
S12	400	2	2	$24 \ldots 60$	$20 . . .60$	20	3RT1373-6AE36	1	1 unit	41B
				48 ... 130	$48 . . .130$	20	3RT1373-6AF36	1	1 unit	41B
				100... 250	$100 . .250$	20	3RT1373-6AP36	1	1 unit	41B
				$250 \ldots 500$	250... 500	20	3RT1373-6AR36	1	1 unit	41B
	500	2	2	$24 \ldots 60$	$20 . . .60$	20	3RT1374-6AE36	1	1 unit	41B
				48 ... 130	48 ... 130	20	3RT1374-6AF36	1	1 unit	41B
				100... 250	100... 250	20	3RT1374-6AP36	1	1 unit	41B
				250... 500	250... 500	20	3RT1374-6AR36	1	1 unit	41B
	525	2	2	$24 \ldots 60$	$20 . . .60$	20	3RT1375-6AE36	1	1 unit	41B
				48 ... 130	48 ... 130	20	3RT1375-6AF36	1	1 unit	41B
				$100 . .250$	100... 250	20	3RT1375-6AP36	1	1 unit	41B
				250 ... 500	250 ... 500	20	3RT1375-6AR36	1	1 unit	41B

Depending on the operational current, bus connectors offset Accessories and spare parts, see page 4/37 onwards. must be used for sizes S10 and S12, see page 4/37:

- 3RT136: For more than 275 A, the 3RT1966-4D bus connectors offset must be used.
- 3RT137: For more than 450 A, the 3RT1976-4D bus connectors offset must be used.
Accessories
Overview graphic for 3RT135 to 3RT137 contactors with mountable accessories, see page 4/24.


## More information

Equipment Manual, see
https://support.industry.siemens.com/cs/ww/en/view/60306557


Spare parts

	For contactors	Auxiliary contacts Version				SD	Screw terminals	$\bigoplus$		PS*	PG
	Type	$\underset{\mathrm{NO}}{\mid}$	$\varlimsup_{\mathrm{NC}}^{4}$	Left	Right		Article No.	Price per PU			
First auxiliary switch (1 NO + 1 NC)											
	Lateral mountin 3RT135 3RT137	on the	d/or th	$\left.\left.\right\|_{14} ^{13}\right\|_{22} ^{21}$	$\left(\left.\begin{array}{l} 31 \\ \vdots \\ - \\ 32 \end{array}\right\|_{44}\right.$	20	3RH1951-1TA11		1	1 unit	41B
* You can order this quantity or a multiple thereof. Illustrations are approximate								Siemens IC 10-2021			37

# Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications 

## SIRIUS 3RT25 contactors, 4-pole, 2 NO + 2 NC

## Overview

## Standards

IEC/EN 60947-1, IEC/EN 60947-4-1, IEC/EN 60947-5-1 (auxiliary switches)
The contactors are suitable for use in any climate. They are finger-safe according to IEC 60529.
The accessories for the 3-pole SIRIUS 3RT2 contactors can also be used for the 4-pole versions, see page 3/77 onwards.

Size S0 to S3 contactors have two auxiliary contacts 1 NO and 1 NC integrated in the basic version.

## Mountable auxiliary contacts

## Sizes S00 to S3

Four additional auxiliary contacts, including no more than two NC.
For a general description of sizes S00 to S3 of 3RT2 contactors, see page 3/17 onwards.

## Use of 3RT contactors with IE3/IE4 motors

Note:
For the use of 3RT25 contactors in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.
For more information, see page 1/8.

## Application

The contactors are suitable:

- For changing the polarity of hoisting gear motors
- For switching two separate loads

Note:
Single device for pole reversal; not suitable for reversing duty. 3RT25 contactors are not suitable for switching a load between two current sources.

## Technical specifications

| More information | Manuals, see |
| :--- | :--- | :--- |
| Technical specifications, see | https://support.industry.siemens.com/cs/ww/en/ps/16169/man |
| https://support.industry.siemens.com/cs/ww/en/ps/16169/td |  |
| FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16169/faq |  |


Type Size		3RT2516 to 3RT2518 SOO	$\begin{aligned} & \text { 3RT2526 } \\ & \text { SO } \end{aligned}$	3RT2535   S2	3RT2536	3RT2544, 3RT2545 S3
General data						
Dimensions (W x H x D		See 3RT231., page 4/25	See 3RT232. page 4/25	See 3RT233. page 4/25		See 3RT234., page 4/25
Permissible mounting position						
The contactors are designed for operation on a vertical mounting surface.						
Upright mounting position		Special version required				
Mechanical endurance	Operating cycles	30 million	10 million			
Electrical endurance at $I_{\mathrm{e}} / \mathrm{AC}-1$	Operating cycles	Approx. 0.5 million				
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)	V	690				
Protective separation between the coil and the main contacts acc. to IEC 60947-1, Appendix N	V	400				690
Permissible ambient temperature						
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$				
- During storage	${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$				
Degree of protection IP on the front acc. to IEC 60529		IP20 (screw terminals and spring-loaded terminals)				
Touch protection on the front acc. to IEC 60529		Finger-safe for vertical touching from the front (screw terminals and spring-loaded terminals)				

# Switching devices - Contactors and contactor assemblies - Special applications 

SIRIUS 3RT25 contactors, 4-pole, 2 NO + 2 NC

Type Size	3RT2516 to 3RT2518 SOO	$\begin{aligned} & \text { 3RT2526 } \\ & \text { S0 } \end{aligned}$	3RT2535   S2	3RT2536	3RT2544, 3RT2545 S3
Short-circuit protection					
Main circuit					
- Version of the fuse link required for short-circuit protection of the main circuit					
- for type of coordination "1"	$\begin{aligned} & \text { gG: } 35 \mathrm{~A} \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gG: } 63 \text { A } \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gG: } 125 \mathrm{~A} \\ & (690 \mathrm{~V}, \\ & 100 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gG: } 160 \mathrm{~A} \\ & (690 \mathrm{~V}, \\ & 100 \mathrm{kA} \text { ) } \end{aligned}$	$\begin{aligned} & \text { gG: } 250 \text { A } \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$
- for type of coordination "2"	$\begin{aligned} & \text { gG: } 20 \mathrm{~A} \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gG: } 35 \text { A } \\ & (690 \mathrm{~V}, 50 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gG: } 63 \text { A } \\ & (690 \text { V, } \\ & 100 \mathrm{kA}) \end{aligned}$	$\begin{aligned} & \text { gG: } 80 \mathrm{~A} \\ & (690 \mathrm{~V}, \\ & 100 \mathrm{kA}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { gR: } 250 \text { A } \\ & (690 \mathrm{~V}, 100 \mathrm{kA}) \end{aligned}$
Auxiliary circuit					
- Version of the fuse link required for short-circuit protection of the auxiliary switch	Fuse gG: $10 \mathrm{~A}(690 \mathrm{~V}$,	1 kA )			
- Miniature circuit breaker version required for short-circuit protection of the auxiliary switch	6 A (230 V, $400 \mathrm{~A}, \mathrm{C}$ ch	aracteristic)			


Type Size		$\begin{aligned} & \text { 3RT2516- } \\ & \text { 1A } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RT2517-1A, } \\ & \text { 3RT2518-1A } \end{aligned}$	3RT2516-1B, 3RT2517-1B, 3RT2518-1B	$\begin{aligned} & \text { 3RT2526- } \\ & \text { 1A } \\ & \text { So } \end{aligned}$	$\begin{aligned} & \text { 3RT2526- } \\ & \text { 1B } \end{aligned}$	$\begin{aligned} & \text { 3RT253.- } \\ & \text { 1A } \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RT253.- } \\ & \text { 1N } \end{aligned}$	$\begin{aligned} & \text { 3RT254.- } \\ & \text { 1A } \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { 3RT254.- } \\ & \text { 1N } \end{aligned}$
Control										
Type of operating mechanism		AC		DC	AC	DC	AC	AC/DC	AC	AC/DC
Solenoid coil operating range										
- AC operation At 50 Hz		$0.8 \ldots U_{s}$		--	$0.8 \ldots U_{S}$	--	$\begin{aligned} & 0.8 \ldots U_{s} \\ & 1.1 \times U^{2} \end{aligned}$	--	$\begin{aligned} & 0.8 \ldots \\ & 1.1 \times U_{s} \end{aligned}$	--
$\text { At } 60 \text { Hz }$		$\begin{aligned} & 0.8 \ldots \\ & 1.1 \times U_{\mathrm{s}} \end{aligned}$		--	$\begin{aligned} & 0.8 \ldots \\ & 1.1 \times U_{\mathrm{s}} \end{aligned}$	--	$\begin{aligned} & 0.8 \ldots \\ & 1.1 \times U_{\mathrm{s}} \end{aligned}$	--	$\begin{aligned} & 0.85 \ldots \\ & 1.1 \times U_{\mathrm{s}} \end{aligned}$	--
- DC operation Up to $50^{\circ} \mathrm{C}$		--		$0.8 \ldots U_{\mathrm{s}}$	--	$\begin{aligned} & 0.8 \ldots \\ & 1.1 \times U_{\mathrm{s}} \end{aligned}$	--			
Up to $60^{\circ} \mathrm{C}$		--		$\begin{aligned} & 0.85 \ldots U_{\mathrm{s}} \\ & 1.1 \times \end{aligned}$	--	$\begin{aligned} & 0.85 \ldots{ }_{\mathrm{s}} \\ & 1.1 \times{ }^{2} \end{aligned}$	--			
- AC/DC operation		--						$\begin{aligned} & 0.8 \times U_{\mathrm{s} \text { min }} \\ & \ldots .1 \times U_{\mathrm{s} \text { max }} \end{aligned}$	--	$\begin{aligned} & 0.8 \times U_{\mathrm{s} \text { min }} \\ & \dddot{1.1} \times U_{\mathrm{s} \text { max }} \end{aligned}$
Power consumption of the solenoid coils (for cold coil and $1.0 \times U_{\mathrm{S}}$ )										
- AC operation, $50 / 60 \mathrm{~Hz}$, standard version										
- Closing   - P.f.	VA	$\begin{aligned} & 27 / 24.3 \\ & 0.8 / 0.75 \end{aligned}$	37/33	--	$\begin{aligned} & \text { 81/79 } \\ & 0.72 / 0.74 \end{aligned}$	--	$\begin{aligned} & 210 / 188 \\ & 0.69 / 0.65 \end{aligned}$	110 0.95	$\begin{aligned} & 348 / 296 \\ & 0.62 / 0.55 \end{aligned}$	
- Closed - P.f.	VA	$\begin{aligned} & 4.2 / 3.3 \\ & 0.25 / 0.25 \end{aligned}$	5.7/4.4	--	$\begin{aligned} & 10.5 / 8.5 \\ & 0.25 / 0.28 \end{aligned}$	--	$\begin{aligned} & 17.2 / 16.5 \\ & 0.36 / 0.39 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 25 / 18 \\ & 0.35 / 0.41 \end{aligned}$	--
- DC operation										
- Closing   - Closed	$\begin{aligned} & W \\ & W \end{aligned}$	--		$\begin{aligned} & 4 \\ & 4 \end{aligned}$	--	$\begin{aligned} & 5.9 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 23 \\ & 1 \end{aligned}$	$\begin{aligned} & 70 \\ & 1.5 \end{aligned}$	--	$\begin{aligned} & 76 \\ & 1.8 \end{aligned}$
Operating times for $1.0 \times U_{s}{ }^{1)}$ Total break time $=$ Opening delay + Arcing time										
- AC operation										
- Closing delay   - Opening delay	$\mathrm{ms}$	$\begin{aligned} & 9.5 \ldots 24 \\ & 4 \ldots 14 \end{aligned}$	$\begin{aligned} & 9 \ldots 22 \\ & 4.5 \ldots 15 \end{aligned}$	--	$\begin{aligned} & 10 \ldots 17 \\ & 4 \ldots 16 \end{aligned}$	--	$\begin{aligned} & 12 \ldots 22 \\ & 10 \ldots .18 \end{aligned}$	$\begin{aligned} & 30 \ldots 70 \\ & 30 \ldots 55 \end{aligned}$	$\begin{aligned} & 15 \ldots 25 \\ & 11 \ldots 20 \end{aligned}$	$\begin{aligned} & 50 \ldots 70 \\ & 38 \ldots 57 \end{aligned}$
- DC operation										
- Closing delay   - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	--		$\begin{aligned} & 35 \ldots 50 \\ & 7 \ldots 12 \end{aligned}$	--	$\begin{aligned} & 55 \ldots 80 \\ & 16 \ldots .17 \end{aligned}$		$\begin{aligned} & 30 \ldots 70 \\ & 30 \ldots 55 \end{aligned}$	--	$\begin{aligned} & 50 \ldots 70 \\ & 38 \ldots . \\ & \hline \end{aligned}$
- Arcing time	ms	10... 15			10		$10 . . .20$			

[^38]
# Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications 

## SIRIUS 3RT25 contactors, 4-pole, 2 NO + 2 NC

Type	3RT2516	3RT2517	3RT2518	3RT2526	3RT2535	3RT2536	3RT2544	3RT2545
Size	S00			S0	S2		S3	

Rated data of the main contacts

## Load rating with AC

Utilization category AC-1

- Rated operational

At $40^{\circ} \mathrm{C}$ up to 690 V currents $I_{\mathrm{e}}$
At $60^{\circ} \mathrm{C}$ up to $690 \mathrm{~V} \quad \mathrm{~A}$

- Rated power for AC
At 230 V kW 6

$\begin{aligned} & 40 \\ & 35 \end{aligned}$		60	70	100	125
		55	60	90	105
13.323		21	23	34	59
		36	39	40	69
10		16	25	35	50
$A C^{1)} \mathrm{DC}$					
25		35	41	65	80
25	20	35	41	65	80
$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		11		18.5	22
		11		18.5	22
11		18.5	22	30	37
11	7.5	18.5	22	30	37

## Load rating with DC

Utilization category DC-1, ( $L / R \leq 1 \mathrm{~ms}$ )

- Rated operational currents $I_{\mathrm{e}}$ (at $60^{\circ} \mathrm{C}$ )

- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 2.1 \\ & 0.8 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 20 \\ & 4.5 \\ & 1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 55 \\ & 23 \end{aligned}$	60	$\begin{aligned} & 100 \\ & 60 \\ & 9 \\ & 2 \\ & 0.6 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 12 \\ & 1.6 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 10 \\ & 1.8 \end{aligned}$
Utilization category DC-3/DC-5 ${ }^{2}$, shunt-wound and series-wound motors ( $L / R \leq 15 \mathrm{~ms}$ )								
-Rated operational currents $I_{\mathrm{e}}$ (at $60^{\circ} \mathrm{C}$ )								
- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	A   A   A   A   A	$\begin{aligned} & 16 \\ & 0.5 \\ & 0.15 \\ & 0.75 \end{aligned}$	20	$\begin{aligned} & 5 \\ & 2.5 \\ & 1 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 35 \\ & 6 \end{aligned}$		40 0.15
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	A   A   A   A   A	$\begin{aligned} & 16 \\ & 5 \\ & 0.35 \end{aligned}$	20	$\begin{aligned} & 35 \\ & 35 \\ & 15 \\ & 3 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \\ & 25 \\ & 5 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 7 \\ & 0.42 \end{aligned}$

## Switching frequency

Switching frequency $\boldsymbol{z}$ in operating
cycles/hour
Contactors without overload relays

- No-load switching frequency
- Switching frequency $z_{3} \quad I_{\mathrm{e}} / \mathrm{AC}-1$ at $400 \mathrm{~V} \quad 1 / \mathrm{h} 1000$ during rated operation ${ }^{3}$

AC	$1 / \mathrm{h}$	--
DC	$1 / \mathrm{h}$	--
$\mathrm{AC} / \mathrm{DC}$	$1 / \mathrm{h}$	10
$\mathrm{e} / \mathrm{AC}-1$ at 400 V	$1 / \mathrm{h}$	1

--
-10000
1000

5000	--	5000		
	1500	--		1000
1500		500		1000
		1200   $(350)^{4}$	1000   $(350)^{4)}$	900

1) Values for devices with AC and DC operation: For 3RT2526 with DC operation, different values apply to AC-2 and AC-3 for the NC.
2) For $U_{\mathrm{e}}>24 \mathrm{~V}$, the rated operational currents $I_{\mathrm{e}}$ for the NC contact conducting paths are equal to $50 \%$ of the values for the NO contact conducting paths.
${ }^{3)}$ Dependence of the switching frequency $z$ ' on the operational current $I^{\prime}$ and operational voltage $U^{\prime}$ ': $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I\right) \cdot\left(U_{\mathrm{e}} / U\right)^{1.5} \cdot 1 / \mathrm{h}$.
3) The values in brackets apply for 3RT253.-.N.

Selection and ordering data

## AC operation $\sim$

Single device for pole reversal (not suitable for reversing duty)

$\mathrm{PU}($ UNIT, SET, M)	$=1$
PS*	$=1 \mathrm{unit}$
PG	$=41 \mathrm{~B}$



3RT251.-1A. 00


3RT251.-2A. 00


3RT252.-1A. 00


3RT252.-2A. 00


3RT253.-1A. 00


3RT254.-1A. 00

Rated data			Auxiliary contacts		Rated control supply voltage $U_{s}$			SD	Screw terminals (i)		SD	Spring-loaded terminals	
AC-2/AC-3,   $t_{\mathrm{u}}$ : Up to $60^{\circ} \mathrm{C}$		AC-1,   $t_{u}: 40 / 60^{\circ} \mathrm{C}$	Ident. No.	Version			50 Hz AC						
Operational current $I_{\text {e }}$ up to 400 V	Ratings of three-phase motors at 50 Hz and 400 V	Operational current $I_{\mathrm{e}}$ up to $690$							Article No.	Price per PU		Article No.	Price per PU
A	kW	A		NO NC	V		V	d			d		

For screw fixing and snap-on mounting onto TH 35 standard mounting rail
Size 500

94	18/16	--	--	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \\ & \hline \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & \hline- \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \end{aligned}$	3RT2516-1AB00 3RT2516-1AF00 3RT2516-1AP00	5 5 5	3RT2516-2AB00 3RT2516-2AF00 3RT2516-2AP00
12/9 ${ }^{1)} \quad 5.5 / 4^{1)}$	22 / 20	--	--	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & \hline- \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \end{aligned}$	3RT2517-1AB00 3RT2517-1AF00 3RT2517-1AP00	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2517-2AB00 3RT2517-2AF00 3RT2517-2AP00
16/9 ${ }^{1)}$ 7.5/4 ${ }^{\text {1 }}$	$22 / 20$	--	--	--	$\begin{aligned} & \hline 24 \\ & 110 \\ & 230 \\ & \hline \end{aligned}$	--	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2518-1AB00 } \\ & \text { 3RT2518-1AF00 } \\ & \text { 3RT2518-1AP00 } \end{aligned}$	5 5 5	3RT2518-2AB00 3RT2518-2AF00 3RT2518-2AP00
Size S0										
2511	40 / 35	11	1	1	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 5 2	3RT2526-1AB00 3RT2526-1AF00 3RT2526-1AP00	5 5 2	3RT2526-2AB00 3RT2526-2AF00 3RT2526-2AP00
Size S2										
$35 \quad 18.5$	$60 / 55$	11	1	1	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	3RT2535-1AB00 3RT2535-1AF00 3RT2535-1AP00		$\begin{aligned} & -- \\ & -- \end{aligned}$
4122	70 / 60	11	1	1	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 5 2	3RT2536-1AB00   3RT2536-1AF00   3RT2536-1AP00		

## For screw fixing and snap-on mounting onto TH 35-15 and TH 75-15

standard mounting rails
Size S3


[^39]Other voltages according to page 4/53 on request.
Accessories and spare parts, see page 3/77 onwards.

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

## SIRIUS 3RT25 contactors, 4-pole, 2 NO + 2 NC

## DC operation =-=

Single device for pole reversal (not suitable for reversing duty)

PU (UNIT, SET, M)	$=1$
	$=1$ unit
PS	$=41 \mathrm{~B}$



3RT251.-1B. 40
Rated data
AC-2/AC-3, $t_{\mathrm{u}}$ : Up to $60^{\circ} \mathrm{C}$

Opera- Ratings of tional three-phase current $I_{\mathrm{e}}$ up to 400 V


3RT251.-2B. 40

Auxiliary	Rated control   contacts
supply voltage $U_{S}$	
Ident.	Version

Operational current $I_{\mathrm{e}}$ up to 690

For screw fixing and snap-on mounting onto TH 35 standard
mounting rail
Size S00

9	4	18/16	--	--	--	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$5$	$\begin{aligned} & \text { 3RT2516-1BB40 } \\ & \text { 3RT2516-1BM40 } \end{aligned}$	2	$\begin{aligned} & \text { 3RT2516-2BB40 } \\ & \text { 3RT2516-2BM40 } \end{aligned}$
12/9 ${ }^{1)}$	5.5/4 ${ }^{\text {1) }}$	22 / 20	--	--	--	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2517-1BB40 } \\ & \text { 3RT2517-1BM40 } \end{aligned}$	2 5	$\begin{aligned} & \text { 3RT2517-2BB40 } \\ & \text { 3RT2517-2BM40 } \end{aligned}$
16/9 ${ }^{1)}$	7.5/4 ${ }^{1)}$	22 / 20	--	--	--	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT2518-1BB40 3RT2518-1BM40	2 5	$\begin{aligned} & \text { 3RT2518-2BB40 } \\ & \text { 3RT2518-2BM40 } \end{aligned}$
Size S0										
$25(20)^{2)}$	$11(7.5)^{2)}$	$40 / 35$	11	1	1	$\begin{aligned} & 24 \\ & 220 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2526-1BB40 } \\ & \text { 3RT2526-1BM40 } \end{aligned}$	2	$\begin{aligned} & \text { 3RT2526-2BB40 } \\ & \text { 3RT2526-2BM40 } \end{aligned}$

1) Values for NO contact/NC contact. The NC contact can switch no more than 4 kW .
${ }^{2)}$ Value in brackets for NC contact (the deviating value for the NC contact applies only for devices with DC operation).

Other voltages according to page $4 / 53$ on request.
Accessories and spare parts, see page 3/77 onwards.

## AC/DC operation $\simeq$

Single device for pole reversal (not suitable for reversing duty)

PU (UNIT, SET, M)	$=1$
$\mathrm{PS}^{\star}$	$=1$ unit
PG	$=41 \mathrm{~B}$



For screw fixing and snap-on mounting onto TH 35 standard mounting rail
Size S2
With integrated coil circuit (varistor integrated in electronics at the factory)

35	18.5	$60 / 55$	11	1	1	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots 155 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 5 \end{aligned}$	3RT2535-1NB30 3RT2535-1NF30 3RT2535-1NP30	-
41	22	70 / 60	11	1	1	$20 \ldots 33$ $83 \ldots 155$ $175 \ldots 280$	2 5 5	$\begin{aligned} & \text { 3RT2536-1NB30 } \\ & \text { 3RT2536-1NF30 } \\ & \text { 3RT2536-1NP30 } \end{aligned}$	-

For screw fixing and snap-on mounting onto TH 35-15 and TH 75-15 standard mounting rails
Size S3
With integrated coil circuit (varistor integrated in electronics at the factory)

65	30	100 / 90	11	1	1	$\begin{aligned} & 20 \ldots 33 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2544-1NB30 } \\ & \text { 3RT2544-1NP30 } \end{aligned}$	--
80	37	125/105	11	1	1	$\begin{aligned} & 20 \ldots 33 \\ & 175 \ldots 280 \end{aligned}$	5 5	$\begin{aligned} & \text { 3RT2545-1NB30 } \\ & \text { 3RT2545-1NP30 } \end{aligned}$	--

Other voltages according to page 4/53 on request.
Accessories and spare parts, see page 3/77 onwards.

# Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications 

SIRIUS 3RT26 contactors for capacitive loads (AC-6b), 3-pole

## Overview

## Standards

IEC/EN 60947-1, IEC/EN 60947-4-1, IEC/EN 60947-5-1, IEC/EN 60831-1, IEC/EN 61921

## Function

The 3RT26 contactors are special versions of the 3RT2, designed for switching capacitive loads (AC-6b) up to 100 kvar at 400 V .
Characteristic components of the 3RT26 contactors are the precharging resistors switched on via leading auxiliary contacts, which are closed before the main contacts. This limits the peak charging current of capacitive loads and thus minimizes negative impacts on the power supply network.
The 3RT26 contactors are suitable for switching choked or unchoked capacitors in reactive current compensation systems and are also used to switch converters.

## Auxiliary contacts

All 3RT26 contactors for capacitive loads are equipped with auxiliary contacts at the factory.
The 3RT261 and 3RT262 contactors are equipped with a front-mounted auxiliary switch with integrated leading auxiliary contacts for the precharging resistors. A further fourth auxiliary contact in the auxiliary switch is unassigned.

A further freely assignable auxiliary contact is integrated in the basic unit of 3RT261; two of these are integrated in 3RT262.
In the case of the 3RT263 and 3RT264 contactors, the precharging resistors and their leading auxiliary contacts are integrated in the basic unit. These devices are supplied with an auxiliary switch mounted on the left, the auxiliary contacts of which are freely assignable.
Expansion is possible by means of an auxiliary switch with two auxiliary contacts on the right-hand side of the device.

Type	3RT261	3RT262	3RT263, 3RT264
Size	S00	S0	S2, S3
Number of unassigned auxiliary   contacts as delivered from the factory	2	3	2
Number of expandable auxiliary   contacts	0	0	2

## Conductor cross-sections

In order to connect the required minimum cross-section, the use of an infeed terminal may be necessary, see page $3 / 111$. This enables the connection of larger cross-sections than the device connection itself actually allows. For 3RT2628 contactors, this infeed terminal is already included in the scope of supply and is already mounted on the contactor.

## Technical specifications

## More information

Technical specifications, see
https://support.industry. siemens.com/cs/ww/en/ps/16171/td
Type
Size
Contact endurance of the main contacts
The characteristic curves show the contact endurance of the contactors
when switching capacitive loads (AC-6b) depending on the reactive
power $Q_{N}$ and rated operational voltage.
The rated operational current $I_{\mathrm{I}}$ in accordance with utilization category AC-6b
(breaking of 1.35 times the rated operational current) is specified for a contact (breaking of 1.35 times the rated operational current) is specified for a contact endurance of approximately 150000 to 200000 operating cycles.


All technical specifications not mentioned in the table below are identical to those of the 3RT20 contactors:

- For size S00 as for the 3RT201 contactors
- For size SO as for the 3RT202 contactors
- For size S2 as for the 3RT203 contactors
- For size S3 as for the 3RT204 contactors

See page 3/23 onwards.

Type	3RT2617	3RT2625	3RT2626	3RT2627	3RT2628	3RT2636	3RT2637	3RT2645	3RT2646
Size	S00	S0				S2		S3	

## General data

Dimensions (W x H x D) including auxiliary switches and connecting cables

- AC operation

mm $\quad 45 \times 125 \times 45 \times 135 \times 155$ 120
mm $\quad 45 \times 125 \times 45 \times 135 \times 165$ 120

$45 \times 150 \times 65 \times 114 \times 130$	$80 \times 140 \times 152$
155	$80 \times 140 \times 152$
$45 \times 150 \times 65 \times 114 \times 130$	8

$45 \times 150 \times 65 \times 114 \times 130$
$80 \times 140 \times 152$

AC/DC operation

## Permissible mounting position

The contactors are designed for operation on a vertical mounting surface.


## Mechanical endurance

Basic units with mounted auxiliary switch	Operating cycles	3 million								
Electrical endurance   For apparent power at 400 V	kvar   Operating cycles	$\begin{aligned} & 12.5 \\ & 300000 \end{aligned}$	$\begin{aligned} & 16.7 \\ & 200000 \end{aligned}$	20	25	$\begin{aligned} & 33 \\ & 150000 \end{aligned}$	$\begin{aligned} & 50 \\ & 200000 \end{aligned}$	$\begin{aligned} & 75 \\ & 150000 \end{aligned}$	200000	$\begin{aligned} & 100 \\ & 150000 \end{aligned}$
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)	V	690							$1000^{2)}$	
Rated impulse withstand voltage $U_{\text {imp }}$	kV	6							$8^{2)}$	
Protective separation between the coil and the main contacts acc. to IEC 60947-1, Appendix N	V	400							690	
Permissible ambient temperature   - During operation ${ }^{1)}$   - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \end{aligned}$								
Degree of protection IP on the front acc. to IEC 60529		IP20								
Touch protection on the front acc. to IEC 60529		Finger-safe for vertical touching from the front								
Shock resistance										
- Rectangular pulse	$\mathrm{g} / \mathrm{ms}$	$6.7 / 5 \text { and }$ $4.2 / 10$	$\begin{aligned} & 7.5 / 5 \text { and } \\ & 4.7 / 10 \end{aligned}$		5.3/		6.8/5 and		10.3/5 an	6.7/10
- Sine pulse	$\mathrm{g} / \mathrm{ms}$	10.5/5 and 6.6/10	$\begin{aligned} & 11.8 / 5 \text { and } \\ & 7.4 / 10 \end{aligned}$		8.3		10.6/5 an	6.2/10	16.3/5 an	10.5/10

## Short-circuit protection

## Main circuit

Fuse links, operational class gG:
LV HRC, type 3NA; DIAZED, type 5SB;
NEOZED, type 5SE
acc. to IEC/EN 60947-4-1

- Type of coordination


## Auxiliary circuit

- With fuse links of operational class gG: A 10 DIAZED, type 5SB; NEOZED, type 5SE With short-circuit current $I_{\mathrm{k}}=1 \mathrm{kA}$ acc. to IEC 60947-5-1
- With miniature circuit breakers with C

A 10 characteristic with short-circuit current $I_{\mathrm{k}}=400 \mathrm{~A}$

1) A clearance of 10 mm is required for side-by-side mounting.
[^40]
## Switching devices - Contactors and contactor assemblies - Special applications <br> Contactors for special applications

SIRIUS 3RT26 contactors for capacitive loads (AC-6b), 3-pole


Operating times for $0.8 \ldots 1.1 \times U_{s}{ }^{1)}$
Total break time = Opening delay + Arcing time

- AC operation
- Closing delay
- Opening delay
- DC operation
- Closing delay Opening delay
- Arcing time

| ms | $8 \ldots 33$ | $9 \ldots 38$ | $8 \ldots 40$ | $10 \ldots 80$ | $15 \ldots 25$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ms | $4 \ldots 15$ | $4 \ldots 16$ |  | $10 \ldots 18$ | $11 \ldots 20$ |

1) With size $\mathrm{SOO}, \mathrm{DC}$ operation: Operating times at 0.85 to $1.1 \times \mathrm{U}_{\mathrm{s}}$.

Type Size		$\begin{aligned} & \text { 3RT262.-1NB35 } \\ & \text { S0 } \end{aligned}$	3RT262.-1NF35	3RT262.-1NP35	$\begin{aligned} & \text { 3RT263.-1N. } 35 \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RT264.-1N. } 35 \\ & \text { S3 } \end{aligned}$
Control						
Solenoid coil operating range   - AC/DC operation   (50/60 Hz AC or DC)		--	$0.7 \ldots 1.3 \times U_{\text {s }}$		$0.8 \ldots 1.1 \times U_{\text {s }}$	
Power consumption of the solenoid coils (for cold coil and $1.0 \times \mathrm{U}_{\mathrm{s}}$ )						
- AC operation, $50 / 60 \mathrm{~Hz}$, standard version						
- Closing   - P.f.   - Closed   - P.f.	VA VA	$\begin{aligned} & \text { 6.6/6.7 } \\ & 0.98 / 0.98 \\ & 1.9 / 2.0 \\ & 0.86 / 0.82 \end{aligned}$	$\begin{aligned} & 11.9 / 12.0 \\ & 1.6 / 1.8 \\ & 0.79 / 0.74 \end{aligned}$	$\begin{aligned} & 12.7 / 14.7 \\ & 3.9 / 4.3 \\ & 0.51 / 0.56 \end{aligned}$	$\begin{aligned} & 110 \\ & 0.95 \\ & 2.5 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 163 \\ & -\mathbf{3 . 1} \end{aligned}$
- DC operation						
- Closing   - Closed	$\begin{aligned} & W \\ & W \end{aligned}$	$\begin{aligned} & 5.9 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 10.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 14.3 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 70 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 76 \\ & 1.8 \end{aligned}$
Maximum permissible residual current of the electronics (with 0 signal)						
- AC operation ( $230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}$ )	mA	7			< 20	
- DC operation ( $24 \mathrm{~V} / \mathrm{U}_{\mathrm{S}}$ )	mA	16			< 20	
Operating times for $0.8 \ldots 1.1 \times U_{s}$   Total break time $=$ Opening delay + Arcing time						
- AC/DC operation						
- Closing delay for $0.8 \ldots 1.1 \times U_{s}$   - Opening delay for $1.0 \times U_{S}$	ms ms	$\begin{aligned} & 50 \ldots 70 \\ & -\mathbf{3 5} . . .45 \end{aligned}$			$\begin{aligned} & 30 \ldots 100 \\ & 30 \ldots 70 \\ & 30 \ldots 5 \end{aligned}$	$\begin{aligned} & 50 . . .70 \\ & --\quad . \\ & 38 \ldots \\ & \hline \end{aligned}$
- Arcing time	ms	$10 . . .15$				



## Max. switching

frequency $z$
at $T_{u}=60^{\circ} \mathrm{C}^{2)}$
in operating cycles/hour

- At $I_{\mathrm{e}} / \mathrm{AC-6b}$ and at	$230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ 1/h	180		100					200	150
	$400 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \mathrm{1/h}$	180		100				$100 / 80^{3}$	$100 / 80^{3}$	$80 / 604$ )
	$480 \mathrm{~V}, 50 / 60 \mathrm{~Hz} 1 / \mathrm{h}$	180		100		70	60	50	53	40
	$500 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ 1/h	180		100		65	55	45	53	40
	$600 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ 1/h	180		100		45	40	32	30	20
	690 V, 50/60 Hz 1/h	180	150	100	72	36	30	25	30	20
	$1000 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \mathrm{1/h}$	--							30	20

(14) and (11) rated data

Rated insulation voltage	V AC	600								
Operational reactive power at AC-6b, 3-phase, at operational voltage	110 ... 120 V kvar	3.4	4.6	5.5	6.3	8.3	14	19	20	25
	$200 . .208$ V kvar	6.2	8.3	10	11	15	25	34	37	45
	220 ... 230 V kvar	6.9	9.2	11	13	17	27	38	41	50
	460 ... 480 V kvar	14	18	22	25	33	55	75	82	100
	575...600 V kvar	17	23	27	31	41	69	94	103	125
Short-circuit protection	At 600 V kA	5					10			
Fuse for main circuit	Class RK5 A	40	80			100	250			

[^41]
## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

SIRIUS 3RT26 contactors for capacitive loads (AC-6b), 3-pole


## Auxiliary conductors

(1 or 2 conductors can be
connected)

- Solid or stranded
- Finely stranded with end sleeve (DIN 46228)
- AWG cables, solid or stranded
- Terminal screw
- Tightening torque

$\mathrm{mm}^{2}$	$\begin{aligned} & \left.2 \times(0.5 \ldots 1.5)^{1}\right) ; \\ & \left.2 \times(0.75 \ldots 2.5)^{i}\right) ; \max .2 \times 4 \end{aligned}$
$\mathrm{mm}^{2}$	$\begin{aligned} & 2 \times(0.5 \ldots 1.5)^{1)} \\ & \left.2 \times(0.75 \ldots 2.5)^{i}\right) \end{aligned}$
AWG	$\begin{aligned} & \left.2 \times\left(\begin{array}{ll} 20 & \ldots \end{array}\right)^{1}\right) ; \\ & \left.2 \times\left(\begin{array}{ll} 18 & \ldots \end{array} 14\right)^{1}\right)^{\prime} ; \\ & 2 \times 12 \end{aligned}$
	M3   (for Pozidriv size 2; $\varnothing 5 \ldots 6)$
Nm	0.8 ... 1.2
lb.in	7 ... 10.3

${ }^{1)}$ If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

Selection and ordering data

## AC operation

Main, auxiliary and control conductors: Screw terminals



3RT262.-1A. 05


3RT2628-1A. 05 with infeed terminal

Utilization category AC-6b				Auxiliary	Rated control supply voltage $U_{s}$		SD	Screw terminals	$\cdots$	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
Switching AC capacitors at an ambient temperature of $60^{\circ} \mathrm{C}$				contacts, unassigned								
				Version	50 Hz AC	$50 / 60 \mathrm{~Hz} \mathrm{AC}$						
Capacitor rating at operational voltage $50 / 60 \mathrm{~Hz}$				$4$				Article No.	Price per PU			
At 230 V	At 400 V	At 500 V	At 690 V									
kvar	kvar	kvar	kvar	NO NC	V	V	d					

For screw fixing and snap-on mounting onto TH 35 standard mounting rail

## Size SOO

7.2	12.5	15	21	1	1	--	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	55	3RT2617-1AB03 3RT2617-1AF03 3RT2617-1AP03	111	1 unit 1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
						--						
7.2	12.5	15	21	0	2	--	24	5	3RT2617-1AB05	1	1 unit	41B
						--	110	5	3RT2617-1AF05	1	1 unit	41B
						--	230	5	3RT2617-1AP05	1	1 unit	41B
Size S0												
9.6	16.7	21	29	1	2	24	--	5	3RT2625-1AB05	1	1 unit	41B
						110	--	5	3RT2625-1AF05	1	1 unit	41B
						230	--	5	3RT2625-1AP05	1	1 unit	41B
11.5	20	25	34	1	2	24	--	5	3RT2626-1AB05	1	1 unit	41B
						110	--	5	3RT2626-1AF05	1	1 unit	41B
						230	--	5	3RT2626-1AP05	1	1 unit	41B
14	25	31	43	1	2	24	--	5	3RT2627-1AB05	1	1 unit	41B
						110	--	5	3RT2627-1AF05	1	1 unit	41B
						230	--	-	3RT2627-1AP05	1	1 unit	41B
19	33	41	57	1	2	24	--	5	3RT2628-1AB05	1	1 unit	41B
						110	--	5	3RT2628-1AF05	1	1 unit	41B
						230	--	5	3RT2628-1AP05	1	1 unit	41B

Other voltages according to page 4/53 on request.
Accessories and spare parts, see page 3/77 onwards.

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

## SIRIUS 3RT26 contactors for capacitive loads (AC-6b), 3-pole

## AC operation ~

Main, auxiliary and control conductors: Screw terminals


For screw fixing and snap-on mounting onto TH 35 standard mounting rail

## Size S2

29	50	63	86	1	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & \end{aligned}$	3RT2636-1AB03 3RT2636-1AF03 3RT2636-1AP03	111	1 unit   1 unit   1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
29	50	63	86	0	2	24	5	3RT2636-1AB05	1	1 unit	41B
						110	5	3RT2636-1AF05	1	1 unit	41B
						230	5	3RT2636-1AP05	1	1 unit	41B
43	75	94	129	1	1	24	5	3RT2637-1AB03	1	1 unit	41B
						110	5	3RT2637-1AF03	1	1 unit	41B
						230	-	3RT2637-1AP03	1	1 unit	41B
43	75	94	129	0	2	24	5	3RT2637-1AB05	1	1 unit	41B
						110	5	3RT2637-1AF05	1	1 unit	41B
						230	5	3RT2637-1AP05	1	1 unit	41B

For screw fixing and snap-on mounting onto TH 35-15 and TH 75-15
standard mounting rails
Size S3

43	75	94	129	1	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2645-1AB03 3RT2645-1AF03 3RT2645-1AP03	1 1 1	1 unit   1 unit   1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
43	75	94	129	0	2	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 5 5	$\begin{aligned} & \text { 3RT2645-1AB05 } \\ & \text { 3RT2645-1AF05 } \\ & \text { 3RT2645-1AP05 } \end{aligned}$	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
57	100	125	172	1	1	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 5 2	$\begin{aligned} & \text { 3RT2646-1AB03 } \\ & \text { 3RT2646-1AF03 } \\ & \text { 3RT2646-1AP03 } \end{aligned}$	1 1 1	1 unit 1 unit 1 unit	$41 B$ 418 $41 B$
57	100	125	172	0	2	$\begin{aligned} & 24 \\ & 110 \\ & 230 \end{aligned}$	5 5 5	$\begin{aligned} & \text { 3RT2646-1AB05 } \\ & \text { 3RT2646-1AF05 } \\ & \text { 3RT2646-1AP5 } \end{aligned}$	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$

Other voltages according to page $4 / 53$ on request.
Accessories, see page 3/77 onwards.

## DC operation =-=

Main, auxiliary and control conductors: Screw terminals



3RT262.-1B. 45


3RT2628-1B. 45 with infeed terminal


For screw fixing and snap-on mounting onto TH 35 standard mounting rail

## Size SOO

7.2	12.5	15	21	1	1	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	55	$\begin{aligned} & \text { 3RT2617-1BB43 } \\ & \text { 3RT2617-1BF43 } \end{aligned}$	11	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
7.2	12.5	15	21	0	2	24	5	3RT2617-1BB45	1	1 unit	41B
						110	5	3RT2617-1BF45	1	1 unit	41B

Size So

9.6	16.7	21	29	1	2	24	5	3RT2625-1BB45	1	1 unit	41B
						110	5	3RT2625-1BF45	1	1 unit	41B
11.5	20	25	34	1	2	24	5	3RT2626-1BB45	1	1 unit	41B
						110	5	3RT2626-1BF45	1	1 unit	41B
14	25	31	43	1	2	24	5	3RT2627-1BB45	1	1 unit	41B
						110	5	3RT2627-1BF45	1	1 unit	41B
19	33	41	57	1	2	24	5	3RT2628-1BB45	1	1 unit	41B
						110	5	3RT2628-1BF45	1	1 unit	41B

Other voltages according to page 4/53 on request.
Accessories, see page 3/77 onwards.

# Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications 

## SIRIUS 3RT26 contactors for capacitive loads (AC-6b), 3-pole

## AC/DC operation $\sim$

Main, auxiliary and control conductors: Screw terminals

3RT2628-1N. 35 with infeed terminal

Utilization category AC-6b				Auxiliary contacts, unassigned Version		Rated control supply voltage $U_{\mathrm{s}}$   $50 / 60 \mathrm{~Hz} \mathrm{AC}$ or DC	SD	Screw terminals			PS*	PG	
Switching AC capacitors at an ambient temperature of $60^{\circ} \mathrm{C}$													
Capacito voltage 5	ating at op $60 \mathrm{~Hz}$	rational			$4$				Article No.	Price per PU			
At 230 V	At 400 V	At 500 V	At 690 V										
kvar	kvar	kvar	kvar	NO	NC	V	d						

For screw fixing and snap-on mounting onto TH 35 standard mounting rail
Size SO


## For screw fixing and snap-on mounting onto TH 35-15 and TH 75-15

standard mounting rails

## Size S3

43	75	94	129	0	2	$\begin{aligned} & 20 \ldots 33 \\ & 83 \ldots 155 \\ & 175 \ldots 280 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT2645-1NB35 3RT2645-1NF35 3RT2645-1NP35	111	1 unit   1 unit   1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
57	100	125	172	0	2	$20 . .33$	5	3RT2646-1NB35	1	1 unit	41B
						$83 . . .155$	5	3RT2646-1NF35	1	1 unit	41B
						175 ... 280	5	3RT2646-1NP35	1	1 unit	41B

Other voltages according to page 4/53 on request
Accessories, see page 3/77 onwards.

Options
Rated control supply voltages for 3RT2 contactors, possible on request (change of the 10th and 11th digits of the Article No.)
Delivery time on request

Rated control supply	Contactor type 3RT231,	3RT232,	3RT233,	3RT234,   voltage $U_{S}$	3RT251

Sizes S00 to S3

## AC operation ${ }^{1)}$



## Examples

AC operation	3RT2325-1AP00	Contactor with screw terminals; with solenoid coil for 50 Hz for rated control supply voltage of 230 VAC
	3RT32325-1AG20	Contactor with screw terminals; with solenoid coil for $50 / 60 \mathrm{~Hz}$ for rated control supply voltage of 110 VAC
DC operation	3RT2526-2BB40	Contactor with spring-loaded terminals; for rated control supply voltage of 24 V DC

1) For deviating coil voltages and operating ranges of sizes SOO and SO , a SITOP 24 V DC power supply with wide-range input can be used for the coil control, see page $15 / 1$ and Catalog KT 10.1.
${ }^{2)}$ Coil operating range

- At $50 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{\mathrm{s}}$,
- At $60 \mathrm{~Hz}: 0.85$ to $1.1 \times \mathrm{U}_{\mathrm{s}}$.
${ }^{3)}$ Coil operating range
Size S00:
At $50 \mathrm{~Hz}: 0.85$ to $1.1 \times U_{\mathrm{s}}$
At $60 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{\mathrm{s}}$,
Sizes S0 to S3: At 50 Hz and $60 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{S}$
${ }^{4)}$ Coil operating range
- Size SOO:

At $50 / 60 \mathrm{~Hz}: 0.85$ to $1.1 \times \mathrm{U}_{\mathrm{s}}$,

- Sizes SO to S3

At $50 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{S}$
At $60 \mathrm{~Hz}: 0.85$ to $1.1 \times \mathrm{U}_{\mathrm{s}}$
${ }^{5)}$ Coil operating range at $60 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{\mathrm{s}}$.

Rated control supply voltage	Contactor type	3RT2.2.-.N	Rated control supply voltage	Contactor type	3RT2.3.-.N	3RT2.4.-.N
$U_{S \text { min }}$ to $U_{S \text { max }}{ }^{1)}$	Size	S0	$U_{S}$ min to $U_{S}$ max ${ }^{1)}$	Size	S2	S3

## Sizes S0 to S3

AC/DC operation ( $50 / 60 \mathrm{~Hz} \mathrm{AC}$ or DC)

$21 \ldots 28 \vee$ AC/DC	B3	$20 \ldots 33 \vee$ AC/DC	B3	B3
$95 \ldots 130 \vee$ AC/DC	F3	$48 \ldots 80 \vee$ AC/DC	E3	E3
$200 \ldots 280 \vee$ AC/DC	P3	$83 \ldots 155 \vee A C / D C$	F3	F3
		$175 \ldots 280 \vee$ AC/DC	P3	P3

${ }^{1)}$ Coil operating range: $0.8 \times U_{s}$ min to $1.1 \times U_{s}$ max .

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

## SIRIUS 3RT23 to 3RT26, 3RT14 contactors

## Rated control supply voltages for 3RT14 contactors, <br> possible on request (change of the 10th and 11th digits of the Article No.)

Delivery time on request


## Overview

## Standards

IEC/EN 60947-4-1, IEC/EN 60077-2, EN 50155

## Performance range

Sizes S00 to S3

- 3RT20 contactors for motor loads (AC-3) up to $110 \mathrm{~A} / 55 \mathrm{~kW}$

Sizes S6 to S12

- 3RT10 contactors for motor loads (AC-3) from 55 kW to $500 \mathrm{~A} /$ 250 kW
- 3RT14 contactors for weak or non-inductive loads (AC-1) up to 690 A


## Application

Besides standard approval in compliance with IEC 60947-4-1, the contactors with an extended operating range are also approved in compliance with the relevant parts of IEC 60077-2, thus fulfilling the requirement for use in railway applications.
Thus, their suitability for increased requirements such as an

- extended temperature range compared to the IEC 60947-4-1 product standard or
- extended operating range of the contactor operating mechanisms or also
- increased resistance to mechanical oscillations and vibrations is warranted. The design of the terminals in the spring-loaded connection system also contributes toward vibration resistance.


## Versions

In addition to the complete motor contactor series (AC-3) up to 250 kW of sizes S00 to S12 (3RT.0), as from size S6, new variants of the 3RT14 contactors optimized for AC-1 operation up to 525 kW with extended operating conditions are also available.

## Operating range of contactor operating mechanisms

The contactors with extended operating range and railway approval are available with a solid-state DC operating mechanism in all sizes from S00 to S12.

This operating mechanism version has an operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$ in the temperature range -40 to $70^{\circ} \mathrm{C}$. Overvoltage damping of the contactor coil with a varistor circuit is already integrated.
As from size S6, the operating mechanisms are equipped with an additional control input that can be operated between 24 and 110 V DC. This function can optionally be switched on or off via a selector switch.

## Auxiliary switches

These devices can be equipped with auxiliary switches in the same way as their corresponding versions of the standard motor contactors (see overview diagrams of the contactors, page 3/8 onwards).

## Ambient temperature

The permissible ambient temperature for operation of the contactors (across the full operating range of the operating mechanisms) is -40 to $+70^{\circ} \mathrm{C}$.

## Side-by-side mounting

Contactors with conventional operating mechanism

- Sizes S00 and SO:

Side-by-side mounting is permissible at ambient temperatures up to $60^{\circ} \mathrm{C}$. At $>60$ to $70^{\circ} \mathrm{C}$, a clearance of at least 10 mm shall be provided.
Contactors with series resistor

- Size S00:

Side-by-side mounting is permissible at ambient temperatures up to $70^{\circ} \mathrm{C}$.

Contactors with solid-state operating mechanism
(version: 3RT....-....-OLA2)

- Sizes S00 to S3:

Side-by-side mounting is permissible at ambient temperatures up to $70^{\circ} \mathrm{C}$.

- Sizes S6 to S12:

Side-by-side mounting is permissible at ambient temperatures up to $60^{\circ} \mathrm{C}$. At $>60$ to $70^{\circ} \mathrm{C}$, a clearance of at least 10 mm shall be provided.

# Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications 

Contactors for railway applications > SIRIUS 3RT contactors with extended operating range, 3-pole

## Technical specifications

## More information

Technical specifications, see	Manuals, see	https://support.industry. siemens.com/cs/ww/en/ps/16177/man
https://support.industry.siemens.com/cs/ww/en/ps/16177/td		

FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16177/faq

Type			3RT2017	$\begin{aligned} & \text { 3RT2017- } \\ & \text { 2XB4.- } \\ & \text { OLA2 } \end{aligned}$	$\begin{aligned} & \text { 2XF4.- } \\ & \text { 0LA2 } \end{aligned}$	$\begin{aligned} & \text { 3RT2018- } \\ & \text { 2XB4.- } \\ & \text { OLA2 } \end{aligned}$	$\begin{aligned} & \text { 2XF4.- } \\ & \text { OLA2 } \end{aligned}$	3RT202.	$\begin{aligned} & \text { 3RT202.- } \\ & \text { 2XB40- } \\ & \text { OLA2 } \end{aligned}$	2XF40-   0LA2
Size			S00					So		
General data										
- Contactors with series resistor   - Contactors with conventional coil			Special version (on request)   Special version (on request)							
Ambient temperature   - During operation   - During storage		$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40 \ldots+70^{1)} \\ & -55 \ldots+80 \end{aligned}$	$-40 \ldots+70$						
Control										
Solenoid coil operating range	DC		$0.7 \ldots 1.25 \times U_{\text {S }}$							
Power consumption of the solenoid coils			For cold coil and $1.0 \times U_{\text {s }}$							
- Contactors with series resistor	Closing Closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 13 \\ & 4.0 \end{aligned}$	--						
- Contactors with conventional coil	Closing Closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	--				$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	--	
- Contactors with solid-state operating mechanism	Closing Closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	--	$\begin{aligned} & 4.0 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 0.75 \end{aligned}$	--	$\begin{aligned} & 6.7 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 13.2 \\ & 1.3 \end{aligned}$

Rated data of the main contacts

## Load rating with AC

Minimum cross-section in the main circuit

- At maximum AC-1 rated value
$m m^{2} \quad 4$
10
- At maximum $I_{\text {th }}$ rated value $\mathrm{mm}^{2}$-- 4

All details and technical specifications not mentioned here are

1) 3RT20...-K contactors without the article number suffix "-OLA2" are coupling contactors that are certified for the -25 to $+60^{\circ} \mathrm{C}$ standard temperature range. For railway applications, an additional certification approves these contactors with a minimum clearance of 10 mm for the extended temperature range from -40 to $+70^{\circ} \mathrm{C}$.

Type			3RT2035-   3XB40- 3XF40-   OLA2 OLA2	$\begin{aligned} & \text { 3RT203 } \\ & \text { 3XB40- } \\ & \text { OLA2 } \end{aligned}$	3XF40-	$\begin{aligned} & \text { 3RT203 } \\ & \text { 3XB40- } \\ & \text { OLA2 } \end{aligned}$	3XF40OLA2	3RT203 3XB40OLA2		3RT204 3XB40OLA2	3XF40- OLA2
Size			S2							S3	
General data											
Ambient temperature											
- During operation		${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$								
- During storage		${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$								
Control											
Solenoid coil operating range DC			$0.7 \ldots 1.25 \times U_{S}$								
Power consumption of the solenoid coils			For cold coil and $1.0 \times \mathrm{U}_{\mathrm{s}}$								
- Contactors with solid-state operating mechanism	Closing	W	23							76	64
	Closed	W	1							1.8	1.0

## Rated data of the main contacts

## Load rating with AC

Minimum cross-section in the main circuit

- At maximum AC-1 rated value
$\mathrm{mm}^{2} \quad 16$
25
50
- At maximum $I_{\text {th }}$ rated value
$\mathrm{mm}^{2} 16$
25
50
All details and technical specifications not mentioned here are identical to those of the basic units, see page 3/23 onwards.


# Switching devices - Contactors and contactor assemblies - Special applications 

 Contactors for special applicationsContactors for railway applications > SIRIUS 3RT contactors with extended operating range, 3-pole


1) Dependence of the switching frequency $z^{\prime}$ on

For all details and technical specifications not mentioned here, see the operational current $I^{\prime}$ and operational voltage $U^{\prime}$ : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(U_{\mathrm{e}} / U^{1.5} \cdot 1 / \mathrm{h}\right.$.
https://support.industry.siemens.com/cs/ww/en/ps/16177/td.

Type   Size		$\begin{aligned} & \text { 3RT1456-.X.46-0LA2 } \\ & \text { S6 } \end{aligned}$	$\begin{aligned} & \text { 3RT1466-.X.46-0LA2 } \\ & \text { S10 } \end{aligned}$	3RT1467-.X.46-0LA2	$\begin{aligned} & \text { 3RT1476-.X.46-0LA2 } \\ & \text { S12 } \end{aligned}$
General data					
Ambient temperature   - During operation   - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40 \ldots+70 \\ & -55 \ldots+80 \end{aligned}$			
Control					
- Solenoid coil closing for DC   - Solenoid coil closed for DC   - Control version of the switch operating mechanism Actuated via A1/A2	W W	$\begin{aligned} & 320 \\ & 2.8 \\ & \text { PLC-IN or standard A } \end{aligned}$	$\begin{aligned} & 580 \\ & 3.4 \\ & 1 \text { - A2 (can be set) } \end{aligned}$		$\begin{aligned} & 800 \\ & 3.6 \end{aligned}$
- Rated control supply voltage   - Operating range   Actuated via PLC input	V DC	$\begin{aligned} & 24,72 \text { or } 110 \\ & 0.7 \ldots 1.25 \end{aligned}$			
- Rated voltage   - Operating range   - Consumed current at PLC control input according to IEC 60947-1, maximum	V DC mA	$\begin{array}{lll} 24 & \ldots & 110 \\ 0.7 & \ldots & 1.25 \\ 2 & & \end{array}$			
Rated data of the main contacts					
Load rating with AC   Minimum cross-section in the main circuit   - At maximum AC-1 rated value   - At maximum $I_{\text {th }}$ rated value	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 240 \\ & 240 \end{aligned}$	300	$\begin{aligned} & 480 \\ & 480 \end{aligned}$

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

Selection and ordering data
DC operation =-=


1) It is not possible to mount an auxiliary switch. A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C}$.
2) One 4-pole auxiliary switch according to EN 50005 can be mounted from -40 to $70^{\circ} \mathrm{C}$; no clearance required.
${ }^{3)} \mathrm{NC}$ contact cannot be used because it is used for switching of the series resistor

Accessories and spare parts, see page 3/77 onwards

## DC operation =-



3RT201.-2X.41-0LA2
Rated data
IEC 60077-2 IEC 60947-4-1
AC-3
$t \mathrm{u}: 70^{\circ} \mathrm{C}$
Convention
thermal Opera
current tional
current current at
$I_{\text {th }}$ up to $\quad I_{\mathrm{e}}$ up to

690 V $400 \mathrm{~V} \quad 230 \mathrm{~V} 400 \mathrm{~V} 500 \mathrm{~V} 690 \mathrm{~V}$
A A kW kW kW kW


3RT201.-2X.42-0LA2
Auxiliary contacts



3RT202.-2K. 40
SD Spring-loaded


3RT202.-2X.40-0LA2


For screw fixing and snap-on mounting onto TH 35 standard

## mounting rail

Size S00
With integrated coil circuit (varistor integrated in electronics at the factory)

18	12	3	5.5	5.5	5.5	10	1	--	$\begin{aligned} & 24 \ldots 34 \\ & 72 \ldots 125 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2017-2XB41-0LA2 } \\ & \text { 3RT2017-2XF41-0LA2 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
18	12	3	5.5	5.5	5.5	01	--	1	$\begin{aligned} & 24 \ldots 34 \\ & 72 \ldots 125 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT2017-2XB42-0LA2   3RT2017-2XF42-0LA2	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
18	16	4	7.5	10	11	10	1	--	$\begin{aligned} & 24 \ldots 34 \\ & 72 \ldots 125 \end{aligned}$	5 5	$\begin{aligned} & \text { 3RT2018-2XB41-0LA2 } \\ & \text { 3RT2018-2XF41-0LA2 } \end{aligned}$	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
18	16	4	7.5	10	11	01	--	1	$\begin{aligned} & 24 \ldots 34 \\ & 72 \ldots 125 \end{aligned}$	5 5	$\begin{aligned} & \text { 3RT2018-2XB42-0LA2 } \\ & \text { 3RT2018-2XF42-0LA2 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$

Size SO

## With integrated coil circuit

- Coupling contactors with varistor integrated at the factory

--	17	4	7.5	10	11	$11^{1)}$	1	1	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$5$	$\begin{aligned} & \text { 3RT2025-2KB40 } \\ & \text { 3RT2025-2 KF } 40 \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
--	25	5.5	11	11	11	11)	1	1	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$5$	$\begin{aligned} & \text { 3RT2026-2KB40 } \\ & \text { 3RT2026-2KF40 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
--	32	7.5	15	18.5	18.5	11)	1	1	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2027-2KB40 } \\ & \text { 3RT2027-2KF40 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
- Varistor integrated in electronics at the factory														
30	17	4	7.5	10	11	11	1	1	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2025-2XB40-0LA2 } \\ & \text { 3RT2025-2XF40-0LA2 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
30	25	5.5	11	11	11	11	1	1	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2026-2XB40-0LA2 } \\ & \text { 3RT2026-2XF40-0LA2 } \end{aligned}$	1 1	1 unit   1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
36	32	7.5	15	18.5	18.5	11	1	1	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2027-2XB40-0LA2 } \\ & \text { 3RT2027-2XF40-0LA2 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
38	38	7.5	18.5	18.5	18.5	11	1	1	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2028-2XB40-0LA2 } \\ & \text { 3RT2028-2XF40-0LA2 } \end{aligned}$	1 1	1 unit   1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$

1) It is not possible to mount an auxiliary switch. A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C}$.

Accessories and spare parts, see page 3/77 onwards.

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

Contactors for railway applications > SIRIUS 3RT contactors with extended operating range, 3-pole IE3/IE4 ready

## DC operation =-=



For screw fixing and snap-on mounting onto TH 35-15 and TH 75-15 standard mounting rails
Size S3
With integrated coil circuit (varistor integrated in electronics at the factory)

90	80	22	37	45	55	11	1	1	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RT2045-3XB40-0LA2 } \\ & \text { 3RT2045-3XF40-0LA2 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
95	95	22	45	55	75	11	1	1	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RT2046-3XB40-0LA2 3RT2046-3XF40-0LA2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
95	110	30	55	75	75	11	1	1	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	5 5	3RT2047-3XB40-0LA2 3RT2047-3XF40-0LA2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$

Accessories and spare parts, see page 3/77 onwards.

## IE3/IE4 ready Contactors for railway applications > SIRIUS 3RT contactors with extended operating range, 3-pole

## DC operation =-=

- Solid-state operating mechanism with 24 to 110 V DC control signal input
- For screw fixing
- Auxiliary and control conductors: Spring-loaded terminals
- Main conductors: Busbar connections a connection kit with screws, spring washers and nuts is enclosed.


3RT107.-2X.46-0LA2

d

## Solid-state operating mechanism

With control signal input 24 ... 110 V DC
e. g. for control by PLC

With integrated coil circuit (varistor integrated in electronics at the factory)

S6	120	115	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT1054-2XB46-0LA2 3RT1054-2XJ46-0LA2 3RT1054-2XF46-0LA2	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
	140	150	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT1055-2XB46-0LA2 3RT1055-2XJ46-0LA2 3RT1055-2XF46-0LA2	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
	145	185	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT1056-2XB46-0LA2 3RT1056-2XJ46-0LA2 3RT1056-2XF46-0LA2	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
S10	215	225	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 20 \\ & 5 \end{aligned}$	3RT1064-2XB46-0LA2 3RT1064-2XJ46-0LA2 3RT1064-2XF46-0LA2	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
	265	265	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT1065-2XB46-0LA2 3RT1065-2XJ46-0LA2 3RT1065-2XF46-0LA2	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
	265	300	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 5 \end{aligned}$	3RT1066-2XB46-0LA2 3RT1066-2XJ46-0LA2 3RT1066-2XF46-0LA2	1 1 1	1 unit   1 unit   1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
S12	350	400	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RT1075-2XB46-0LA2 3RT1075-2XJ46-0LA2 3RT1075-2XF46-0LA2	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
	475	500	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 20 \\ & 5 \end{aligned}$	3RT1076-2XB46-0LA2 3RT1076-2XJ46-0LA2 3RT1076-2XF46-0LA2	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$

Accessories and spare parts, see page 3/77 onwards.

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

## Contactors for railway applications > SIRIUS 3RT contactors with extended operating range, 3-pole

## DC operation =-=

- Solid-state operating mechanism with 24 to 110 V DC control signal input
- For screw fixing
- Auxiliary and control conductors: Spring-loaded terminals
- Main conductors: Busbar connections; a connection kit with screws, spring washers and nuts is enclosed.


3RT1456-2X.46-0LA2


3RT146.-2X.46-0LA2


## Solid-state operating mechanism

## With control signal input 24 ... 110 V DC

e. g. for control by PLC

S6	190	275	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 20 \\ & 5 \end{aligned}$	3RT1456-2XB46-0LA2 3RT1456-2XJ46-0LA2 3RT1456-2XF46-0LA2	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
S10	330	400	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 20 \\ & 20 \end{aligned}$	3RT1466-2XB46-0LA2 3RT1466-2XJ46-0LA2 3RT1466-2XF46-0LA2	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \\ & \hline \end{aligned}$
	330	500	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	3RT1467-2XB46-0LA2 3RT1467-2XJ46-0LA2 3RT1467-2XF46-0LA2	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
S12	520	690	2	2	$\begin{aligned} & 24 \\ & 72 \\ & 110 \end{aligned}$	$\begin{aligned} & 5 \\ & 20 \\ & 20 \end{aligned}$	3RT1476-2XB46-0LA2 3RT1476-2XJ46-0LA2 3RT1476-2XF46-0LA2	1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$

Accessories and spare parts, see page 3/77 onwards.

## Contactors for railway applications > SIRIUS 3RH2 contactor relays with extended operating range

## Overview

## Standards

IEC/EN 60947-5-1
The contactor relays are finger-safe according to IEC 60529. The size S00 contactor relays have spring-loaded connections for all terminals.

## Ambient temperature

The permissible ambient temperature for operation of the contactor relays (across the full coil operating range) is -40 to $+70^{\circ} \mathrm{C}$.

Uninterrupted duty at temperatures $>+60^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current carrying capacity of the conducting paths and the switching frequency.

## Control and auxiliary circuits

The solenoid coils of the contactor relays have an extended coil operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$ and are fitted as standard with surge suppressors. The opening delay is consequently 2 to 5 ms longer than for standard contactors.

## Application

For operation in installations that are subject both to considerable variations in the control voltage and to high ambient temperatures, e. g. railway applications under extreme climatic conditions, rolling mills, etc.
Also for control supply voltages with battery buffering to extend the operating time in the event of battery charge failure.

## Contactor relays with conventional coil

Control and auxiliary circuits
These contactor relays have an extended operating range from 0.7 to $1.25 \times U_{s}$; the solenoid coils are fitted with suppressor diodes as standard. An additional series resistor is not required. Note:
An additional auxiliary switch cannot be mounted.
Side-by-side mounting
A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C} \leq 70^{\circ} \mathrm{C}$.

## Contactor relays with series resistor

Control and auxiliary circuits
The DC solenoid systems of the contactor relays are modified (to holding coil) by means of a series resistor.

The size SOO contactor relays are supplied prewired with a plugon module containing the series resistor. A surge suppressor (a suppressor diode or varistor as preferred) is integrated.
A 4-pole auxiliary switch (according to EN 50005) can be mounted additionally.
Side-by-side mounting
Side-by-side mounting is permissible at ambient temperatures up to $70^{\circ} \mathrm{C}$.

## Contactor relays with solid-state operating mechanism

## Control and auxiliary circuits

The solenoid coils of these contactor relays have an extended coil operating range from 0.7 to $1.25 \times U_{s}$ and are fitted as standard with varistors to provide protection against overvoltage.
The contactor relays are energized via upstream control electronics which ensure the coil operating range of 0.7 to $1.25 \times U_{\mathrm{S}}$ at an ambient temperature of $70^{\circ} \mathrm{C}$. They are supplied as complete units with integrated coil electronics. A varistor is integrated for damping opening surges in the coil.
Side-by-side mounting
Side-by-side mounting is permissible at ambient temperatures up to $70^{\circ} \mathrm{C}$.

## Technical specifications

| More information |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Technical specifications, see <br> https://support.industry.siemens.com/cs/ww/en/ps/16174/td <br> FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16174/faq |  |  |

1) 3RH21..-. K contactor relays without article number suffix "-OLA." are coupling contactor relays that are certified for the temperature range -25 to $+60^{\circ} \mathrm{C}$. For railway applications, an additional certification approves these contactors with a minimum clearance of 10 mm for the extended temperature range from -40 to $+70^{\circ} \mathrm{C}$.

All details and technical specifications not mentioned here are identical to those of the 3RH2 basic units, see page 5/4 onwards.

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

Contactors for railway applications > SIRIUS 3RH2 contactor relays with extended operating range
Selection and ordering data
DC operation =्=


[^42]Accessories, see page 3/77 onwards
Other voltages according to page $3 / 75$ on request.

## Overview

## Standards

IEC/EN 60947-5-1
The contactor relays are finger-safe according to IEC 60529. Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices.

## Ambient temperature

The permissible ambient temperature for operation of the contactors (across the full coil operating range) is -50 to $+70^{\circ} \mathrm{C}$. Uninterrupted duty at temperatures $<-25^{\circ} \mathrm{C}$ and $>+55^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current carrying capacity of the conducting paths and the switching frequency.
A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>55^{\circ} \mathrm{C}$. There is no need to reduce the technical specifications.

## Application

For operation in installations which are subject both to considerable variations in the control voltage and to high ambient temperatures, e.g. in railway applications.

## Control and auxiliary circuits

The solenoid coils of the contactor relays have an extended coil operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$ and are fitted as standard with varistors to provide protection against overvoltage. The opening delay is consequently 2 to 5 ms longer than for standard contactors.

Technical specifications

More information	Manuals, see	
Technical specifications, see	https://support.industry. siemens.com/cs/ww/en/ps/16176/man	
https://support.industry.siemens.com/cs/ww/en/ps/16176/td		
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16176/faq		



## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

Contactors for railway applications > 3TH4 contactor relays, 8-pole
Selection and ordering data
DC operation $=$


[^43]Other voltages according to page $5 / 22$ on request
Accessories, see page 5/23.

## Overview

## Standards

IEC/EN 60947-4-1
The contactors are finger-safe according to IEC 60529 (exception: series resistor). Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices.
All details and technical specifications not mentioned here are identical to those of the standard 3TC contactors, see page 4/69.

## Ambient temperature

The permissible ambient temperature for operation of the contactors (across the full coil operating range) is -50 to $+70^{\circ} \mathrm{C}$. Uninterrupted duty at temperatures $<-25^{\circ} \mathrm{C}$ and $>+55^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current carrying capacity of the conducting paths and the switching frequency.
A clearance of 10 mm is required for side-by-side mounting of size 2 contactors at ambient temperatures $>55^{\circ} \mathrm{C}$. There is no need to reduce the technical specifications.

## Series resistor

The DC solenoid systems of the 3TC contactors must be modified (to holding coil) by means of a series resistor. This series resistor is supplied separately packed with the contactors.
With types 3TC48, the series resistor must be attached onto the right-hand side of the auxiliary switch by means of the enclosed mounting parts and sets of links provided, while in the case of the 3TC44 it must be mounted and wired between the contactor poles. With types 3TC52 and 3TC56, the series resistor must be attached separately next to the contactors.

## Auxiliary contacts

The contactors are equipped with two lateral auxiliary switches each with $1 \mathrm{NO}+1$ NC contact. Further auxiliary switches cannot be mounted onto the DC-operated contactors.
One NC contact is required for the series resistor function. Two NO contacts and one NC contact are thus unassigned.

## Reversing contactors

With the 3TC52 and 3TC56 contactors, the series resistor must be connected using an additional K2 reversing contactor. This contactor is automatically included in the scope of supply.

## Dimensions

Attaching resistors and varistors increase the width of the contactors.

## Application

For operation in installations which are subject both to considerable variations in the control voltage and to high ambient temperatures, e.g. in railway applications.

## Control and auxiliary circuits

The solenoid coils of the contactors have an extended coil operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$ and are fitted as standard with varistors to provide protection against overvoltage. The opening delay is consequently 2 to 5 ms longer than for standard contactors.

Technical specifications

More information	
Technical specifications, see   https://support.industry.siemens.com/cs/ww/en/ps/16180/td	Manuals, see   https://support.industry.siemens.com/cs/ww/en/ps/16180/man



All details and technical specifications not mentioned here are identical to those of the basic units of the 3TC contactors, see page 4/69.

# Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications 

Contactors for railway applications > 3TC contactors for switching DC voltage, 2-pole

## Selection and ordering data

## DC operation $=$

3TC44: For screw fixing and snap-on mounting onto 35 mm standard mounting rail
3TC48 to 3TC56: For screw fixing


## Contactors for switching DC voltage

With integrated coil circuit (varistor integrated at the factory)

| 2 | DC-1 | 32 | 7 | 14 | 19.2 | 24 | 2 | $1^{2)}$ | 24 | 5 | 3TC4417-0LB4 | 1 | 1 unit | 41 B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DC-3/DC-5 | 7.5 | 5 | 9 | 9 | 4 |  |  | 110 | 10 | 3TC4417-0LF4 | 1 | 1 unit | $41 B$ |  |

With laterally mounted coil circuit (varistor mounted externally in additional auxiliary switch enclosure on the contactor)

4	$\begin{aligned} & \text { DC-1 } \\ & \text { DC-3/DC-5 } \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 13 \end{aligned}$	$\begin{aligned} & 33 \\ & 27 \end{aligned}$	$\begin{aligned} & 45 \\ & 38 \end{aligned}$	$\begin{aligned} & 56 \\ & 45 \end{aligned}$	2	$1^{2)}$	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { 3TC4817-0LB4 } \\ & \text { 3TC4817-0LF4 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
8	$\begin{aligned} & \text { DC-1 } \\ & \text { DC-3/DC-5 } \end{aligned}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$	$\begin{aligned} & 48 \\ & 41 \end{aligned}$	$\begin{aligned} & 97 \\ & 82 \end{aligned}$	$\begin{aligned} & 132 \\ & 110 \end{aligned}$	$\begin{aligned} & 165 \\ & 110 \end{aligned}$	2	$1^{2)}$	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { 3TC5217-0LB4 } \\ & \text { 3TC5217-0LF4 } \end{aligned}$	1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
12	$\begin{aligned} & D C-1 \\ & \text { DC-3/DC-5 } \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 88 \\ & 70 \end{aligned}$	$\begin{aligned} & 176 \\ & 140 \end{aligned}$	$\begin{aligned} & 240 \\ & 200 \end{aligned}$	$\begin{aligned} & 300 \\ & 250 \end{aligned}$	2	$1^{2)}$	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	3TC5617-0LB4   3TC5617-0LF4	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$

${ }^{1)}$ The number of auxiliary contacts cannot be increased. Other rated control supply voltages according to page 4/76
2) One NC contact used for series resistor.
on request

## Accessories

Accessories, see basic units of the 3TC contactors,
page 4/76 onwards.
Spare parts for contactors with extended operating range

For contactors		Remarks	Rated control supply voltage $U_{s}$	SD	Article No.	Price per PU		PS*	PG
Size	Type		V DC	d					
Arc chutes									
2	3TC4417-0L..	With cutout for resistor mounting	--	X	3TY2442-0B		1	1 unit	41B
Solenoid coils									
2	3TC44	With series resistor, without varistor	$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & 15 \\ & \times \end{aligned}$	3TY6443-0LB4   3TY6443-0LF4		1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
4	3 TC 48		$\begin{aligned} & 24 \\ & 110 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	3TY6483-0LB4 3TY6483-0LF4		1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$

All spare parts not mentioned here are identical to those of the basic units of the 3TC contactors, see page 4/78.

## Overview

## 3TC4 and 3TC5

IEC/EN 60947-1, IEC/EN 60947-4-1, IEC/EN 60947-5-1 (auxiliary switches)
The contactors are finger-safe according to IEC 60529. Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices.
The DC motor ratings given in the tables are applicable to the DC-3 and DC-5 utilization categories with 2-pole switching of the load or with the two conducting paths of the contactor connected in series.

One contactor conducting path can switch full power up to 220 V. For voltages over 220 V , the two conducting paths are to be switched in series, see Rated data of the main contacts, page 4/71.

## Auxiliary contacts

The contactors are equipped with two lateral auxiliary switches each with $1 \mathrm{NO}+1$ NC contact. On the 3TC48 to 3TC56 contactors with AC operation, a second auxiliary switch can be mounted on the right and left. On contactors with DC operation, expansion of the auxiliary contacts is not possible.

## 3TC7

IEC/EN 60947-4-1
The contactors are suitable for use in any climate. They are suitable for switching and controlling DC motors as well as all other DC circuits.
The solenoid excitation is configured for a particularly large operating range. It is between 0.7 or 0.8 and $1.2 \times U_{\mathrm{S}}$.
3TC74 contactors can be used at up to $750 \mathrm{~V} / 400 \mathrm{~A}$ and 50 Hz in AC-1 operation.
For voltages over 750 V , the two conducting paths (3TC74: two contactors) are to be switched in series, see Rated data of the main contacts, page 4/73.

## Application

The contactors are suitable for switching and controlling DC motors as well as all other DC circuits.

A version with a particularly large coil operating range is available for operation in electrically driven vehicles and in switchgear subject to large fluctuations in actuating voltage (see page 4/68).

## Technical specifications

Type			3TC4 and 3TC7	3TC5	
Rated data of the auxiliary contacts					
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)		V	690		
Conventional thermal current $I_{\text {th }}=$ rated operational current $I_{\mathrm{e}} / \mathrm{AC}-12$		A	10	10	
Rated operational current $I_{\mathrm{e}} / \mathrm{AC}-15 / \mathrm{AC}-14$					
- For rated operational voltage $U_{\mathrm{e}}$	$\begin{array}{r} 24 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \\ 220 \mathrm{~V} \\ 230 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 6 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 6 \\ & 5.6 \end{aligned}$	
	$\begin{aligned} & 380 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4 \\ & 3.6 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 3.6 \\ & 2.5 \\ & 2.5 \end{aligned}$	
DC load					
Rated operational current $I_{\text {e }} / \mathrm{DC-12}$					
- For rated operational voltage $U_{e}$	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 3.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 8 \\ & 6 \end{aligned}$	
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A   A   A	$\begin{aligned} & 0.9 \\ & 0.33 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 2 \\ & 0.6 \\ & 0.4 \end{aligned}$	
Rated operational current $I_{\mathrm{e}} / \mathrm{DC-13}$					
- For rated operational voltage $U_{\text {e }}$	$\begin{array}{r} 24 \mathrm{~V} \\ 48 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 5 \\ & 1.14 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 10 \\ & 5 \\ & 2.4 \\ & 2.1 \end{aligned}$	
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & A \\ & A \\ & A \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.13 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 0.32 \\ & 0.21 \end{aligned}$	
Type			3TC44 to 3TC56		
(6) and (11) rated data of the auxiliary contacts					
Rated voltage, max.		V AC	600		
Switching capacity			A 600, P 600		
				Siemens IC 10-2021	4/69

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

## 3TC contactors for switching DC voltage, 1- and 2-pole

Type
Contact endurance of the main contacts
3TC44 to 3TC78

## General data

Dimensions (W x H x D)

- DC operation
- AC operation


mm	$70 \times 85 \times 141$	$100 \times 183 \times 180$	$135 \times 238 \times 232$	$160 \times 279 \times 310$
mm	$70 \times 85 \times 100$	$100 \times 183 \times 154$	$135 \times 238 \times 200$	$160 \times 279 \times 251$

## Permissible mounting position

The contactors are designed for operation on a vertical mounting surface.


Mechanical endurance Operating cycles	Operating cycles	10 million			
Electrical endurance		See the endurance diagram above			
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	800		1000	
Rated impulse withstand voltage $U_{\text {imp }}$	kV	8			
Protective separation between the coil and the main contacts acc. to IEC 60947-1, Appendix N	V	Up to 300		Up to 660	
Mirror contacts ${ }^{1)}$   A mirror contact is an auxiliary NC contact that cannot be closed simultaneously with an NO main contact.		Yes, acc. to IEC 60947-4-1, Appendix F			
Permissible ambient temperature					
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+55$			
- During storage	${ }^{\circ} \mathrm{C}$	$-50 \ldots+80$			
Degree of protection IP on the front acc. to IEC 60529		IP00	IP00 (IP20 with cover)		
Touch protection on the front acc. to IEC 60529		--	Finger-safe for vertical touching from the front with cover		
Shock resistance Rectangular pulse	$\mathrm{g} / \mathrm{ms}$	7.5/5 and 3.4/10	10/5 and 5/10	12/5 and 5.5/10	12/5 and 5.6/10

## Main circuit

Fuse links, operational class gG:
LV HRC, type 3NA; DIAZED, type 5SB; NEOZED, type 5SE

- Type of coordination "1"

A	50	160	250	400
A	35	63	80	250

- Type of coordination "2"


## Auxiliary circuit

(short-circuit current $I_{\mathrm{k}} \leq 1 \mathrm{kA}$ )

- Fuse links, operational class gG:

A 16
DIAZED, type 5SB; NEOZED, type 5SE

- Miniature circuit breaker with C characteristic

A 10
) For 3TC44, one NC contact each must be connected in series for the right and left auxiliary switch respectively.

Rated data of the auxiliary contacts, see page 4/69.

Type			$3 \mathrm{TC44}$	3 TC 48	3 TC52	3 TC56
Size			2	4	8	12
Control						
Solenoid coil operating range			$0.8 \ldots 1.1 \times U_{\text {s }}$			
Power consumption of the solenoid coils (for cold coil and $1.0 \times U_{s}$ )						
- DC operation	- Closing = Closed	W	10	19	30	86
- AC operation, 50 Hz coil	- Closing   - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & 68 / 0.86 \\ & 10 / 0.29 \end{aligned}$	$\begin{aligned} & 300 / 0.5 \\ & 26 / 0.24 \end{aligned}$	$\begin{aligned} & 640 / 0.48 \\ & 46 / 0.23 \end{aligned}$	$\begin{aligned} & 1 \text { 780/0.3 } \\ & 121 / 0.22 \end{aligned}$
- AC operation, 60 Hz coil	- Closing   - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & \text { 95/0.79 } \\ & \text { 12/0.3 } \end{aligned}$	$\begin{aligned} & 365 / 0.45 \\ & 35 / 0.26 \end{aligned}$	$\begin{aligned} & 730 / 0.38 \\ & 56 / 0.24 \end{aligned}$	$\begin{aligned} & 2 \text { 140/0.3 } \\ & 140 / 0.29 \end{aligned}$
- AC operation, $50 / 60 \mathrm{~Hz}$ coil	- Closing	VA/p.f.	79/73/0.83/0.78	--		
	- Closed at $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	VA/p.f.	11/9/0.28/0.27	--		
$\begin{aligned} & \text { Operating times }\left(\text { for } 0.8 \ldots 1.1 \times U_{\mathrm{s}}\right) \\ & \text { Total break time }=\text { Opening delay }+ \text { Arcing time } \end{aligned}$			(The values apply up to and including 20\% undervoltage, $10 \%$ overvoltage, as well as when the coil is cold and warm)			
- DC operation	- Closing delay   - Opening delay ${ }^{11}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 190 \\ & 10 \ldots 25 \end{aligned}$	$\begin{aligned} & 90 \ldots 380 \\ & 17 \ldots 28 \end{aligned}$	$\begin{aligned} & 120 \ldots 400 \\ & 22 \ldots 35 \end{aligned}$	$\begin{aligned} & 110 \ldots 400 \\ & 40 \ldots 110 \end{aligned}$
- AC operation	- Closing delay   - Opening delay ${ }^{11}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 10 \ldots 40 \\ & 5 \ldots 25 \end{aligned}$	$\begin{aligned} & 20 \ldots 50 \\ & 5 \ldots 30 \end{aligned}$	$10 . . .30$	
- Arcing time	- DC-1   - DC-3/DC-5	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$			
Rated data of the main contacts						
Load rating with DC						
Utilization category DC-1 ( $L / R \leq 1 \mathrm{~ms}$ )						
- Rated operational currents $I_{\mathrm{e}}$ (at $55^{\circ} \mathrm{C}$ )	Up to $U_{\mathrm{e}} 750 \mathrm{~V}$	A	32	75	220	400
- Minimum conductor cross-section		$\mathrm{mm}^{2}$	6	25	95	240
- Rated power at $U_{e}$ ( $\leq 220 \mathrm{~V}$ DC: one conducting path, > 220 V DC: two conducting paths in series)	$\begin{array}{r} \text { At } 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \\ 750 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 7 \\ & 14 \\ & 19.2 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.5 \\ & 33 \\ & 45 \\ & 56 \\ & \hline \end{aligned}$	48   97   132   165	$\begin{aligned} & 88 \\ & 176 \\ & 240 \\ & 300 \\ & \hline \end{aligned}$
Utilization category DC-3 and DC-5, shunt-wound and series-wound motors ( $L / R \leq 15 \mathrm{~ms}$ )						
- Rated operational currents $I_{\mathrm{e}}$ (at $55^{\circ} \mathrm{C}$ )	$\begin{array}{r} \text { Up to } 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \\ 750 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 32 \\ & 29 \\ & 21 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 220 \\ & 220 \\ & 220 \\ & 170 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$
- Rated power at $U_{e}$ ( $\leq 220 \mathrm{~V}$ DC: one conducting path, > 220 V DC: two conducting paths in series)	$\begin{array}{r} \text { At } 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \\ 750 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5 \\ & 9 \\ & 9 \\ & 4 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 13 \\ & 27 \\ & 38 \\ & 45 \end{aligned}$	$\begin{aligned} & 20 \\ & 41 \\ & 82 \\ & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 35 \\ & 70 \\ & 140 \\ & 200 \\ & 250 \end{aligned}$

## Switching frequency

Switching frequency $\boldsymbol{z}$ in operating cycles/hour
AC/DC operation

- For weak or non-inductive load DC-1
- For inductive load DC-3/DC-5


## Conductor cross-sections

## Main conductors

(1 or 2 conductors can be connected)

- Solid
- Finely stranded with end sleeve
- Stranded with cable lug
- Pin-end connector to DIN 46231
- Busbars
- Terminal screw


## Auxiliary conductors

(1 or 2 conductors can be connected)

- Solid $\mathrm{mm}^{2} 2 \times(1 \ldots 2.5)$
- Finely stranded with end sleeve

$$
\mathrm{mm}^{2} \quad 2 \times(0.75 \ldots 1.5)
$$

1) The opening delay times can increase if the contactor coils are attenuated against voltage peaks. The 3TC44 contactors are not allowed to be fitted with diodes.

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

3TC contactors for switching DC voltage, 1- and 2-pole

Type
Design
Ceneral data
Dimensions (W $\mathbf{x ~ H ~ x ~ D ) ~}$

[^44]| Type Design |  |  | 3TC74 | 3 TC78 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1-pole contactors | 2-pole contactors |
| Rated data of the main contacts |  |  |  |  |
| Load rating with DC |  |  |  |  |
| Utilization category DC-1 ( $L / R \leq 1 \mathrm{~ms}$ ) |  |  |  |  |
| - Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-1$ (at $55^{\circ} \mathrm{C}$ ) |  | A | 500 |  |
| - Minimum conductor cross-section |  | $\mathrm{mm}^{2}$ | $2 \times 150$ |  |
| - Rated power ( $\leq 750$ V DC: one conducting path, $>750 \mathrm{~V}$ DC: two conducting paths in series) | $\begin{array}{r} \text { At } 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$ | $\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$ | $\begin{aligned} & 110 \\ & 220 \\ & 300 \end{aligned}$ |  |
|  | 750 V | kW | 375 |  |
|  | 1200 V | kW | -- | 600 |
|  | 1500 V | kW | -- | 750 |
| - critical currents, without arc extinction | At 440 V | A | $\leq 7$ | -- |
|  | 600 V | A | $\leq 13$ | -- |
|  | 750 V | A | $\leq 15$ | -- |
|  | $\leq 800 \mathrm{~V}$ | A | -- | $\leq 7$ |
|  | 1200 V | A | -- | $\leq 13$ |
|  | 1500 V | A | -- | $\leq 15$ |
| Utilization category DC-3 and DC-5, shunt-wound and series-wound motors ( $L / R \leq 15 \mathrm{~ms}$ ) |  |  |  |  |
| - Rated operational current $I_{\mathrm{e}}$ (at $55^{\circ} \mathrm{C}$ ) |  | A | 400 |  |
| - Rated power at $U_{e}$ ( $\leq 220 \mathrm{~V}$ DC: one conducting path, $>220 \mathrm{~V}$ DC: two conducting paths in series) | $\begin{array}{r} \text { At } 110 \mathrm{~V} \\ 220 \mathrm{~V} \end{array}$ | $\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$ | $\begin{aligned} & 35 \\ & 70 \end{aligned}$ |  |
|  | $440 \mathrm{~V}$ | kW | $140$ |  |
|  | 600 V | kW | 200 |  |
|  | 750 V | kW | 250 |  |
|  | 1200 V | kW | -- | 400 |
|  | 1500 V | kW | -- | 500 |
| Permissible rated current for regenerative braking at 110 ... 600 V |  | A | 400 |  |
| Switching frequency |  |  |  |  |
| Switching frequency $\boldsymbol{z}$ in operating cycles/hour |  |  |  |  |
| AC/DC operation |  |  |  |  |
| - For weak or non-inductive load DC-1 |  | $\mathrm{h}^{-1}$ | 750 | 1000 |
| - For inductive load DC-3/DC-5 |  | $\mathrm{h}^{-1}$ | 500 |  |
| Conductor cross-sections |  |  |  |  |
| Main conductors <br> (1 or 2 conductors can be connected) |  |  | (1) Screw terminals |  |
| - Stranded with cable lug |  | $\mathrm{mm}^{2}$ | $2 \times \ldots 150$ |  |
| - Busbars |  | mm | $2 \times(30 \times 4)$ |  |
| Auxiliary conductors <br> (1 or 2 conductors can be connected) |  |  |  |  |
| - Solid |  | $\mathrm{mm}^{2}$ | 1... 2.5 |  |
| - Finely stranded with end sleeve |  | $\mathrm{mm}^{2}$ | 0.75 ... 1.5 |  |

Rated data of the auxiliary contacts, see page 4/69.

# Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications 

3TC contactors for switching DC voltage, 1- and 2-pole
Selection and ordering data
$D C$ operation $=$ or $A C$ operation, $50 \mathrm{~Hz} \frown$


## AC operation, 50 Hz

For screw fixing and snap-on mounting onto TH 35 standard mounting rail

2	$\begin{aligned} & \text { DC-3, } \\ & \text { DC-5 } \end{aligned}$	32	2.5	5	9	9	4	2	2	$\begin{aligned} & 220 / 230 A C^{5} \\ & 110 / 110 A C \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3TC4417-0BP0 } \\ & \text { 3TC4417-0BF0 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
For screw fixing															
4	$\begin{aligned} & \text { DC-3, } \\ & \text { DC-5 } \end{aligned}$	75	6.5	13	27	38	45	2	2	$\begin{aligned} & 220 / 230 A C^{5} \\ & 110 \mathrm{AC} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3TC4817-0BP0 } \\ & \text { 3TC4817-0BF0 } \end{aligned}$	1 1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
8	$\begin{aligned} & \text { DC-3, } \\ & \text { DC-5 } \end{aligned}$	2204 )	20	41	82	110	110	2	2	$\begin{aligned} & 220 / 230 \mathrm{AC}^{5)} \\ & 110 \mathrm{AC} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3TC5217-0BP0 } \\ & \text { 3TC5217-0BF0 } \end{aligned}$	1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
12	$\begin{aligned} & \text { DC-3, } \\ & \text { DC-5 } \end{aligned}$	400	35	70	140	200	250	2	2	$\begin{aligned} & 220 / 230 \mathrm{AC}^{5} \\ & 110 \mathrm{AC} \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	3TC5617-0BPO 3TC5617-0BF0	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$

1) Permissible load for DC-1 utilization category, see detailed technical specifications in the Reference Manual.
2) The following rated operational currents are permitted for reversing duty with 3TC44 to 3TC56 contactors:

Contactor Rated operational voltage
$\frac{\text { Type }}{3 T C 44} \quad \frac{110 \mathrm{~V}, 220 \mathrm{~V}}{32 \mathrm{~A}} \frac{440 \mathrm{~V}}{7 \mathrm{~A}}$
3TC48 $75 \mathrm{~A} \quad 75 \mathrm{~A}$
$3 T C 52170 \mathrm{~A} \quad 170 \mathrm{~A}$
$3 T C 56400 \mathrm{~A} \quad 400 \mathrm{~A}$
3) The fitting of auxiliary switches cannot be altered on DC-operated contactors.
4) $\mathrm{At}>600 \mathrm{~V}: I_{\mathrm{e}}=170 \mathrm{~A}$.
5) Operating range at 220 V AC: 0.85 to $1.15 \times \mathrm{U}_{\mathrm{s}}$; lower operating range limit according to IEC 60947

Other rated control supply voltages according to page 4/76 on request.

Accessories, see page 4/76 onwards.
Spare parts, see page 4/78.

## $D C$ operation $==$ or $A C$ operation, $50 \mathrm{~Hz} \sim$

For screw fixing


3TC74 1-pole contactors . Operational voltage up to 750 V

## DC operation

12	$\begin{aligned} & \text { DC-3, } \\ & \text { DC-5 } \end{aligned}$	400	35	70	140	200	250	--	--	4	4	$\begin{aligned} & 24 \text { DC } \\ & 110 \text { DC } \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	3TC7414-0EB 3TC7414-0EF	1	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
AC operation, 50 Hz																	
12	$\begin{aligned} & \text { DC-3, } \\ & \text { DC-5 } \end{aligned}$	400	35	70	140	200	250	--	--	4	4	$\begin{aligned} & 230 / 220 \\ & \left.\mathrm{AC}^{3}\right)^{2} \end{aligned}$	15	3TC7414-1CM	1	1 unit	41B

3TC78 2-pole contactors . Operational voltage up to 1500 V

## DC operation

12	$\begin{aligned} & \text { DC-3, } \end{aligned}$	400	35	70	140	200	250	400	500	4	4	$\begin{aligned} & 24 \text { DC } \\ & 110 \text { DC } \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	3TC7814-0EB 3TC7814-0EF	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
AC operation, 50 Hz																	
12	$\begin{aligned} & \text { DC-3, } \\ & \text { DC-5 } \end{aligned}$	400	35	70	140	200	250	400	500	4	4	$\begin{aligned} & 230 / 220 \\ & \left.\mathrm{AC}^{3}\right)^{2} \end{aligned}$	15	3TC7814-1CM	1	1 unit	41B

1) Permissible load for DC-1 utilization category, see detailed technical specifications in the Reference Manual.
2) The fitting of auxiliary switches cannot be altered on DC-operated contactors.
3) Upper operating range limit at $230 \mathrm{VAC}: 1.14 \times \mathrm{U}_{\mathrm{S}}$

Other rated control supply voltages according to page 4/76 on request.
Spare parts, see page 4/78.

# Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications 

3TC contactors for switching DC voltage, 1- and 2-pole

## Options

Rated control supply voltages, possible on request (change of the 10th and 11th digits of the Article No.)
Delivery time on request


1) Operating range at $220 \mathrm{VAC}: 0.85$ to $1.15 \times \mathrm{U}_{\mathrm{S}}$; lower operating range limit according to IEC 60947
2) Upper operating range limit at $230 \mathrm{VAC}: 1.14 \times \mathrm{U}_{\mathrm{s}}$.

Accessories


	For contactors		Version	Rated control supply voltage $U_{s}$		SD   d	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
	Size	Type		V AC	V DC						
Surge suppressors - Varistors											
	2	3TC44 ${ }^{1)}$	Varistors ${ }^{2}$ )   With line spacer, for mounting onto the coil terminal	$\begin{aligned} & 24 \ldots 4 \\ & 48 \ldots 127 \\ & 127 \ldots 240 \\ & 240 \ldots 400 \\ & 400 \ldots 600 \end{aligned}$	$\begin{aligned} & 24 \ldots 70 \\ & 70 \ldots 150 \\ & 150 \ldots 250 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 20 \\ & 20 \end{aligned}$	3TX7402-3G   3TX7402-3H   3TX7402-3J   3TX7402-3K   3TX7402-3L		1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit	41B   41B   41B   41B   41B
3TX7402-3.	4	3 TC 48	Varistors ${ }^{2}$ )   For sticking onto the contactor base or for mounting separately	$24 \ldots 48$ $48 \ldots 127$ $127 \ldots 240$ $240 \ldots 400$ $400 \ldots 600$	$\begin{aligned} & 24 \ldots 70 \\ & 70 \ldots 150 \\ & 150 \ldots 250 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	3TX7462-3G   3TX7462-3H   3TX7462-3J   3TX7462-3K   3TX7462-3L		1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
	$8 \text { and } 12$	$\begin{aligned} & \text { 3TC52, } \\ & \text { 3TC56 } \end{aligned}$	Varistors   For sticking onto the contactor base or for mounting separately	$24 \ldots 48$ $48 \ldots 127$ $127 \ldots 240$ $240 \ldots 400$ $400 \ldots 600$	$\begin{aligned} & \hline-- \\ & \text {-- } \\ & \text {-- } \\ & \text {-- } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	3TX7462-3G   3TX7462-3H   3TX7462-3J   3TX7462-3K   3TX7462-3L		1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
3TX7462-3.   3TX7522-3.	$8 \text { and } 12$	$\begin{aligned} & \text { 3TC52, } \\ & \text { 3TC56 } \end{aligned}$	Varistors ${ }^{2}$   For separate screw fixing or snapping onto TH 35 standard mounting rail	--	$\begin{aligned} & 24 \ldots 70 \\ & 70 \ldots 150 \\ & 150 \ldots 250 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	3TX7522-3G   3TX7522-3H   3TX7522-3J		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
Surge suppressors - RC elements											
	4	3TC48	RC elements   For lateral snapping onto auxiliary switch or TH 35 standard mounting rail		$\begin{aligned} & 24 \ldots . \\ & -- \\ & 70 \\ & 70 \\ & \text {... } \\ & \hline \end{aligned} 150$	$\begin{aligned} & 20 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	3TX7462-3R 3TX7522-3R   3TX7462-3S 3TX7522-3S   3TX7462-3T 3TX7522-3T   3TX7462-3U   3TX7462-3V		1 1 1 1 1 1 1 1	1 unit   1 unit	41B   41B
$\begin{aligned} & \text { 3TX7462-3., } \\ & \text { 3TX7522-3. } \end{aligned}$	$8 \text { and } 12$	$\begin{aligned} & \text { 3TC52, } \\ & \text { 3TC56 } \end{aligned}$	RC elements   For lateral snapping onto auxiliary switch or TH 35 standard mounting rail	$\begin{aligned} & 24 \ldots 48 \\ & 48 \ldots . .127 \\ & 127 \ldots 240 \\ & 240 \ldots 400 \\ & 400 \ldots .600 \end{aligned}$	$\begin{aligned} & \text {-- } \\ & \text {-- } \\ & \text {-- } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	3TX7522-3R   3TX7522-3S   3TX7522-3T   3TX7522-3U   3TX7522-3V		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \\ & 41 B \\ & 41 B \\ & 41 B \end{aligned}$
Surge suppressors • Diodes											
	$4 \text { to } 12$	3TC48,   3TC52, 3TC56	Diode assemblies ${ }^{3)}$ (Diode and Zener diode) for DC solenoid system, for sticking onto the contactor base or for mounting separately	--	$24 \ldots 250$	2	3TX7462-3D		1	1 unit	41B
1) The connection piec bent slightly.	for mounti	ng the surg	ge suppressor must		2) Includ   3) Not for	$\begin{aligned} & \text { des th } \\ & \text { or DC } \end{aligned}$	e peak value economy circ	nating vo	tage on th	DC side	
	For contac	tors	Version			SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
	Size	Type				d					
Terminal covers											
	$\frac{6}{8 \text { and } 12}$	$\begin{aligned} & \frac{3 T C 48}{3 T C 52,} \\ & 3 T C 56 \end{aligned}$	For protection against inadvertent M6   contact with exposed busbar   connections M10   Can be screwed on free screw end;   covers one busbar connection    ( 1 set $=6$ units)			5	3TX6506-3B		1	1 unit	41B

Surge suppressors . RC elements

3TX7462-3.

1) The connection piece for mounting the surge suppressor must be	For contactors Version	SD
Size		

For protection against inadvertent contact with exposed busbar

Can be screwed on free screw en
(1 set = 6 units)
${ }^{2)}$ ) Includes the peak value of the alternating voltage on the DC side
${ }^{3)}$ Not for DC economy circuit.

## Switching devices - Contactors and contactor assemblies - Special applications Contactors for special applications

3TC contactors for switching DC voltage, 1- and 2-pole


[^45] of the article number must be supplemented accordingly.

## Switching devices - Contactors and contactor assemblies Contactor relays and relays


$\left.\begin{array}{l|l}\text { Price groups } \\ \text { PG 41A, 41B, 41H, 41L }\end{array}\left|\begin{array}{ll}\text { Introduction }\end{array}\right| \begin{array}{l}\text { Contactor relays } \\ \text { SIRIUS 3RH2 contactor relays, } \\ \text { 4- and 8-pole } \\ \text { 3TH4 contactor relays, } \\ \text { 8- and 10-pole } \\ \text { - Accessories for 3TH4 contactor relays } \\ \text { Contactors for railway applications }\end{array}\right\}$

Switching devices - Contactors and contactor assemblies - Contactor relays and relays

## Introduction

## Overview



Note:
Safety characteristics for contactors, see
"Standards and approvals", page 16/7.


## Connection methods

The contactor relays and the relays are available with screw terminals (box terminals) or with spring-loaded terminals.
The $3 R Q$ coupling relays are supplied with screw terminals and spring-loaded (push-in) terminals. The plug-in bases for LZS/LZX coupling relays are also available with plug-in (push-in) terminals.


Screw terminals
Spring-loaded terminals,
spring-loaded terminals (push-in)
Flat connectors
$\square$
Plug-in terminals (push-in)
The connection method is indicated in the corresponding tables by the respective symbol shown on an orange background.

3RQ coupling relays: Spring-loaded terminals (push-in) with TOP-wiring
Push-in terminals are a form of spring-loaded terminals allowing fast wiring without tools for rigid conductors or conductors equipped with end sleeves.
As with other spring-loaded terminals, a screwdriver (with $3.0 \times 0.5 \mathrm{~mm}$ blade) is required to disconnect the conductor. The same tool can also be used to wire finely-stranded or stranded conductors with no end finishing.

The advantages of the push-in terminals are found, as with all spring-loaded terminals, in speed of assembly and disassembly and vibration-proof connection. There is no need for the checking and tightening required with screw terminals, see video "SIRIUS spring-loaded terminals - strong, flexible, safe and fast!"
With the TOP wiring method, the wire inlet and terminals can be reached from the front. This helps to speed up the wiring process and eliminate wiring errors.

# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Contactor relays 

## SIRIUS 3RH2 contactor relays, 4- and 8-pole

## Overview

Contactor relays, size S00, with accessories


## Standards

## IEC/EN 60947-1, IEC/EN 60947-4-1, IEC/EN 60947-5-1

The 3RH2 contactor relays are available with screw or springloaded terminals. The basic unit contains four contacts with terminal designations according to EN 50011.
The 3RH2 contactor relays are suitable for use in any climate. They are finger-safe according to IEC 60529.
The 3RH21 coupling contactor relays for switching auxiliary circuits are tailored to the special requirements of working with electronic controls.

## Contact reliability

High contact stability at low voltages and currents, suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage of $\geq 17 \mathrm{~V}$.

## Surge suppression

RC elements, varistors, diodes or diode assemblies (combination of a diode and a Zener diode) can be plugged onto all 3RH2 contactor relays from the front for damping opening surges in the coil. The plug-in direction is determined by a coding device.
Coupling contactor relays have a low power consumption and an extended solenoid coil operating range.
Depending on the version, the solenoid coils of the coupling contactor relays are supplied either without overvoltage damping (versions 3RH21.... HB40 or 3RH21..-.MB40-OKT0) or with a diode or suppressor diode connected as standard.

## Auxiliary switches

The 3RH21 contactor relays (with the exception of coupling contactor relays) can be expanded by up to four contacts by the addition of mounted auxiliary switches.
The auxiliary switch can easily be snapped onto the front of the contactor relays. The auxiliary switch has a centrally positioned release lever for disassembly.
The conventional front auxiliary contacts fulfill the characteristics of positively driven operation and are therefore suitable for safety applications.

## Contactor relays in safety-related applications

Contactor relays are a significant part of safety-related applications. They are generally the actuators that perform the switching operation leading to the safe disconnection of the corresponding application or system.
Contactor relays with positively driven operation according to IEC 60947-5-1 are generally required for use in safety-related applications. Most of our contactors meet this requirement; a corresponding note can be found in the technical product data sheet.

## Contactor relays with increased tamper protection

Increased tamper protection is ensured either by using our contactor relay versions with permanently mounted auxiliary switches installed in the factory (e.g. 3RH22 contactor relays), or by using the 3RT2916-4MA10 sealable cover as an accessory (see page 3/119).

## Accessories

The accessories for the 3RT2 contactors in size S00 can also be used for the 3RH2 contactor relays (see page 3/77 onwards).

## Article No. scheme



Note:
The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Contactor relays 

## SIRIUS 3RH2 contactor relays, 4- and 8-pole

Technical specifications

## More information

Technical specifications, see
Manuals, see https://support.industry.siemens.com/cs/ww/en/ps/16188/man
https://support.industry.siemens.com/cs/ww/en/ps/16188/td
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16188/faq

Type
Size

## posituly driven contact

## Contact reliability

Contact reliability at $17 \mathrm{~V}, 1 \mathrm{~mA}$ acc. to IEC 60947-5-4

## Contact endurance for AC-15/AC-14

and DC-13 utilization categories
The contact endurance is mainly dependent on the breaking current. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
If magnetic circuits other than the contactor operating mechanisms or solenoid valves are present, e.g. magnetic brakes, protective measures for the load circuits are necessary, e.g. in the form of RC elements and freewheel diodes.
The characteristic curves apply to

- 3RH21/3RH22 contactor relays ${ }^{1)}$
- 3RH24 latched contactor relays
- 3RH2911 auxiliary switches ${ }^{1)}$
- Auxiliary switches for snapping onto the front max. 4-pole and for mounting onto the side in size SOO

Frequency of contact faults $<10^{-8}$, i.e. $<1$ fault per 100 million operating cycles


1) 3 RH22, 3 RH2911: $I_{\mathrm{e}}=6 \mathrm{~A}$ for AC-15/AC-14 and DC-13.


# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Contactor relays 

SIRIUS 3RH2 contactor relays, 4- and 8-pole

Type		Contactor relays		
		3RH21	3RH22	3RH24
Size		S00		
Conductor cross-sections				
Auxiliary conductors and coil terminals (1 or 2 conductors can be connected)		(1) Screw terminals		
- Solid or stranded	$\mathrm{mm}^{2}$			
- Finely stranded with end sleeve	$\mathrm{mm}^{2}$	$2 \times(0.5 \ldots 1.5)^{1)} ; 2 \times(0.75 \ldots 2.5)^{1)}$		
- AWG cables, solid or stranded	AWG	$\left.2 \times(20 . . .16)^{1}\right) ; 2 \times(18 . . .14)^{1)}$		
- Terminal screw		M3 (for Pozidriv size 2, $\varnothing 5 \ldots 6 \mathrm{~mm}$ )		
- Tightening torque	Nm	0.8 ... 1.2 ( 7 ... $10.3 \mathrm{lb} . \mathrm{in}$ )		
Auxiliary conductors and coil terminals ${ }^{2)}$ (1 or 2 conductors can be connected)		00 Spring-loaded terminals		
- Operating devices	mm	$3.0 \times 0.5 ; 3.5 \times 0.5$		
- Solid or stranded	$\mathrm{mm}^{2}$	$2 \times(0.5 \ldots 4)$		
- Finely stranded with end sleeve	$\mathrm{mm}^{2}$	$2 \times(0.5 \ldots 2.5)$		
- Finely stranded without end sleeve	$\mathrm{mm}^{2}$	$2 \times(0.5 \ldots 2.5)$		
- AWG cables, solid or stranded	AWG	$2 \times(20 . . .12)$		
Auxiliary conductors for front and laterally mounted auxiliary switches ${ }^{2}$				
- Operating devices	mm	$3.0 \times 0.5 ; 3.5 \times 0.5$		
- Solid or stranded	$\mathrm{mm}^{2}$	$2 \times(0.5 \ldots 2.5)$		
- Finely stranded with end sleeve	$\mathrm{mm}^{2}$	$2 \times(0.5 \ldots 1.5)$		
- Finely stranded without end sleeve	$\mathrm{mm}^{2}$	$2 \times(0.5 \ldots 2.5)$		
- AWG cables, solid or stranded	AWG	$2 \times(20 \ldots 14)$		

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified
2) Max. external diameter of the conductor insulation: 3.6 mm . On spring-loaded terminals with conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an insulation stop is recommended, see page 3/122.

3) The 3RT2916-1GA00 additional load module is recommended for higher residual currents, see page $3 / 121$.
4) The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are attenuated against voltage peaks (suppression diode 6x to 10x; diode assembly $2 x$ to $6 x$; varistor +2 to 5 ms ).

# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Contactor relays 

## SIRIUS 3RH2 contactor relays, 4- and 8-pole



## Upright mounting position

## On request

Type Size			Contactor relays 3RH2   SOO
Rated data of the auxiliary contacts			
Load rating with AC   Rated operational currents $I_{\mathrm{e}}$   AC-12		A	10
AC-15/AC-14, at rated operational voltage $U_{e}$	$\begin{array}{r} \text { Up to } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10^{1)} \\ & 3 \\ & 2 \\ & 1 \end{aligned}$
Load rating with DC   Rated operational currents $I_{\mathrm{e}}$   DC-12, at rated operational voltage $U_{e}$   - 1 conducting path	$\begin{gathered} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 6 \\ & 3 \\ & 1 \\ & 0.3 \\ & 0.15 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 4 \\ & 2 \\ & 1.3 \\ & 0.65 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A A A A A A	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 3.6 \\ & 2.5 \\ & 1.8 \\ & \hline \end{aligned}$
DC-13, at rated operational voltage $U_{e}$   - 1 conducting path	$\begin{gathered} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10^{1)} \\ & 2 \\ & 1 \\ & 0.3 \\ & 0.14 \\ & 0.1 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 3.5 \\ & 1.3 \\ & 0.9 \\ & 0.2 \\ & 0.1 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 4.7 \\ & 3 \\ & 1.2 \\ & 0.5 \\ & 0.26 \\ & \hline \end{aligned}$
Switching frequency			
Switching frequency $\boldsymbol{z}$ in operating cycles/hour   - Rated operation for utilization category Dependence of the switching frequency $z$ ' on the operational current $I^{\prime}$ and operational voltage $U^{\prime}$ ': $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I\right) \cdot\left(U_{\mathrm{e}} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$	AC-12/DC-12   AC-15/AC-14 DC-13	$\begin{aligned} & 1 / h \\ & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \end{aligned}$
- No-load switching frequency		1/h	10000
(13) and (1) rated data			
Basic units and auxiliary switches   - Rated control supply voltage   - Rated voltage   - Switching capacity   - Uninterrupted current at 240 V AC		VAC VAC A	$\begin{aligned} & \max .600 \\ & 600 \\ & \text { A } 600, \text { Q } 600 \\ & 10 \end{aligned}$

# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Contactor relays 

## SIRIUS 3RH2 contactor relays, 4- and 8-pole

Selection and ordering data
AC operation ~

$\mathrm{PU}($ UNIT, SET, M)	$=1$
PS*	$=1 \mathrm{unit}$
PG	$=41 \mathrm{~A}$



For screw fixing and snap-on mounting
onto TH 35 standard mounting rail
Size SOO


1) Coil operating range

- At $50 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{s}$
- At $60 \mathrm{~Hz}: 0.85$ to $1.1 \times U_{\mathrm{s}}$.

Other voltages according to page 3/75 on request.
Accessories, see page 3/77 onwards.

## DC operation =-=

$$
\begin{aligned}
\text { PU (UNIT, SET, M) } & =1 \\
& =1 \text { unit } \\
& =41 \mathrm{~A}
\end{aligned}
$$


onto TH 35 standard mounting rail
Size SOO


Other voltages according to page 3/75 on request.
Accessories, see page 3/77 onwards.

## Switching devices - Contactors and contactor assemblies - Contactor relays and relays Contactor relays

## SIRIUS 3RH2 contactor relays, 4- and 8-pole

## DC operation for direct control by PLC ==-

- Coupling contactor relays with adapted power consumption
- Suitable for solid-state PLC outputs
- Cannot be expanded with auxiliary switches

PU (UNIT, SET, M) = 1
PS* $=1$ unit
PG $=41 \mathrm{~A}$


For screw fixing and snap-on mounting
onto TH 35 standard mounting rail

## Size SOO

Cannot be expanded with auxiliary switches
Operating range $\mathbf{0 . 7}$ to $\mathbf{1 . 2 5} \times \boldsymbol{U}_{\mathbf{s}}$,
power consumption of the solenoid coils 2.8 W at 24 V

10	40E	4	--	24
	31E	3	1	24
	22E	2	2	24

Operating range $\mathbf{0 . 8 5}$ to $\mathbf{1 . 8 5} \times \boldsymbol{U}_{\mathbf{s}}$,
power consumption of the solenoid coils $\mathbf{1 . 6} \mathbf{W}$ at 24 V

10	40E	4	--	24
	31E	3	1	24
	22E	2	2	24



3RH21..-1.B40

g

Other voltages according to page $3 / 75$ on request.
Accessories, see page 3/77 onwards.

## DC operation for direct control by PLC ==-

- Coupling contactor relays with adapted power consumption
- Suitable for solid-state PLC outputs
- Cannot be expanded with auxiliary switches

PU $($ UNIT, SET, M) $=1$

PS*	$=1$ unit
PG	$=41 \mathrm{~A}$



For screw fixing and snap-on mounting
onto TH 35 standard mounting rail

## Size SOO

With integrated coil circuit (diode integrated at factory)
Cannot be expanded with auxiliary switches
Operating range $\mathbf{0 . 7}$ to $\mathbf{1 . 2 5} \mathbf{x} \boldsymbol{U}_{\mathbf{s}}$
Power consumption of the solenoid coils $\mathbf{2 . 8} \mathbf{~ W}$ at 24 V


Other voltages according to page 3/75 on request.
Accessories, see page 3/77 onwards.

# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Contactor relays 

## 3TH4 contactor relays, 8- and 10-pole

## Overview

## Standards

IEC/EN 60947-1, IEC/EN 60947-5-1
The 3TH42 and 3TH43 contactor relays are suitable for use in any climate. They are finger-safe according to IEC 60529.
Note:
The 3TH42 and 3TH43 contactor relays feature positively driven operation in accordance with IEC 60947-5-1, Ed. 3.1.

## Terminal designations according to EN 50011

In terms of their terminal designations, identification numbers and identification letters, the 3TH42 and 3TH43 contactor relays conform to the standard EN 50011 for "Particular Contactor Relays".

## Contact reliability

High contact stability at low voltages and currents as a result of double-break contacts, suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage of $\geq 17 \mathrm{~V}$.

## Surge suppression

The 3TH42 and 3TH43 contactor relays can be equipped with RC elements, varistors, diodes or diode assemblies (combination of a diode and a Zener diode) for damping opening surges. The surge suppressors can be mounted directly on the coil (see page $5 / 23$ ).

## Note:

The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are attenuated against voltage peaks (suppression diode $6 x$ to 10x; diode assembly $2 x$ to $6 x$; varistor +2 to 5 ms ).

## Mounting

Note:
With 3TH4 contactor relays with AC operation, an overvoltage of $1.1 \times U_{\mathrm{S}}$, an ambient temperature $\geq 45^{\circ} \mathrm{C}$ and $100 \%$ ON-period of all contactors, a minimum clearance of 5 mm between the contactors shall be observed in the case of side-by-side mounting

## Technical specifications

Contactor relays

Contact endurance for $\mathrm{AC}-15 / \mathrm{AC-14}$
and $\mathrm{DC}-13$ utilization categories

The contact endurance is mainly dependent on the breaking current.
It is assumed that the operating mechanisms are switched randomly,
i.e. not synchronized with the phase angle of the supply system.
If magnetic circuits other than the contactor operating mechanisms or
solenoid valves are present, e.g. magnetic brakes, protective measures
for the load circuits are necessary.

RC elements or freewheel diodes are suitable as protective measures for
the circuits.

Switching devices - Contactors and contactor assemblies - Contactor relays and relays Contactor relays

3TH4 contactor relays, 8- and 10-pole


1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Contactor relays 

## 3TH4 contactor relays, 8- and 10-pole



1) Coils for USA, Canada and Japan: 0.85 to $1.1 \times U_{\mathrm{S}}$ at 60 Hz .
2) The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are attenuated against voltage peaks (suppression diode 6x to 9x;
diode assembly $2 x$ to $6 x$; varistor +2 to 5 ms ).

Contactor relays	Type		3TH42, 3TH43
Rated data of the auxiliary contacts			
Load rating with AC			
Rated operational currents $I_{\mathrm{e}}$   - AC-12		A	16
- AC-15/AC-14, at rated operational voltage $U_{e}$			
	$\begin{aligned} & 230 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 500 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 6 \\ & 4 \\ & 2 \end{aligned}$
Rated power of three-phase motors   Acc. to utilization categories AC-2 and AC-3, 50 Hz			
	$\begin{array}{r} 230 / 220 \mathrm{~V} \\ 400 / 380 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 / 660 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$

## Load rating with DC

Rated operational currents $I_{\mathrm{e}}$
DC-12, at rated operational voltage $U_{e}$

- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series

Up to 48 V	A	10
110 V	A	2.1
220 V	A	0.8
440 V	A	0.6
Up to 48 V	A	10
110 V	A	10
220 V	A	1.6
440 V	A	0.8
Up to 48 V	A	10
110 V	A	10
220 V	A	10
440 V	A	1.3

DC-13, at rated operational voltage $U_{e}$

- 1 conducting path
- 2 conducting paths in series
- 3 conducting paths in series

Up to 24 V	A	10
48 V	A	5
110 V	A	1
220 V	A	0.45
440 V	A	0.25
600 V	A	0.2
Up to 24 V	A	10
48 V	A	10
110 V	A	2.5
220 V	A	0.75
440 V	A	0.5
600 V	A	0.4
Up to 24 V	A	10
48 V	A	10
110 V	A	10
220 V	A	2
440 V	A	0.9
600 V	A	0.8

## Switching frequency

Switching frequency $\boldsymbol{z}$ in operating cycles/hour

- Rated operation for utilization category

Dependence of the switching frequency $z$ ' on the operational current $I^{\prime}$ and operational voltage $U^{\prime}$ : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I\right) \cdot\left(U_{\mathrm{e}} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$

AC-12/DC-12	$1 / \mathrm{h}$	1000
AC-2	$1 / \mathrm{h}$	500
AC-3	$1 / \mathrm{h}$	1000
AC-15AC-14	$1 / \mathrm{h}$	3600
DC-13	$1 / \mathrm{h}$	3600
	$1 / \mathrm{h}$	10000

# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Contactor relays 

3TH4 contactor relays, 8- and 10-pole
Selection and ordering data
8-pole contactor relays
$A C$ operation $\sim$ or $D C$ operation $=$


Contacts	Rated operational current $I_{\mathrm{e}} / \mathrm{AC}-15 / \mathrm{AC}-14$ at				Contacts				SD	Screw terminals $\because$			PS*	PG
	$\begin{aligned} & 230 / \\ & 220 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 400 / \\ & 380 \mathrm{~V} \end{aligned}$	500 V	$\begin{aligned} & 690 / \\ & 660 \mathrm{~V} \end{aligned}$	Ident. No. acc. to EN 50011									
								1		Article No.	Price per PU			
Number	A	A	A	A		NO	NC	NC	d					

For screw fixing and snap-on mounting onto TH 35 standard mounting rail
AC operation, rated control supply voltage $U_{\mathrm{s}}=50 \mathrm{~Hz} 230 / 220 \mathrm{VAC}^{1)}$


[^46]Other voltages according to page 5/22 on request.
Accessories, see page 5/23.

## Note:

The solenoid coils of the 3TH42 contactor relays are available in various voltages as spare parts (on request).

- AC operation: 3TY7403-0A.
- DC operation: 3TY4803-0B.

The contacts cannot be replaced on 3TH42 contactor relays.

## 10-pole contactor relays

## AC operation $\sim$ or DC operation $=$



## Note:

The solenoid coils of the 3TH43 contactor relays are available
in various voltages as spare parts (on request).

- AC operation: 3TY7403-0A.
- DC operation: 3TY4803-0B.

The contacts cannot be replaced on 3TH43 contactor relays.

# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Contactor relays 

3TH4 contactor relays, 8- and 10-pole

## Options

Rated control supply voltages, possible on request (change of the 10th and 11th digits of the Article No.)
Delivery time on request
$\left.\begin{array}{ll|l} & \text { Contactor type } & \text { 3TH42/3TH43 } \\ \begin{array}{l}\text { Rated control supply } \\ \text { voltage } U_{s}\end{array} & \text { Control supply voltage at }\end{array}\right)$

	Contactor type
Rated control supply   voltage $U_{\mathrm{s}}$	3TH42/3TH43
DC operation	
12 V DC	
24 V DC	A4
30 V DC	B4
36 V DC	C4
42 V DC	V4
48 V DC	D4
60 V DC	W4
110 V DC	E4
125 V DC	F4
220 V DC	G4
230 V DC	M4
20 V DC	P4

[^47]Selection and ordering data


1) The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are attenuated against voltage peaks (suppression diode 6x to 10x;
diode assembly $2 x$ to $6 x$; varistor +2 to 5 ms ).

## Switching devices - Contactors and contactor assemblies - Contactor relays and relays Coupling relays

SIRIUS 3RQ2 coupling relays with industrial enclosure

## Overview



SIRIUS 3RQ2 coupling relay, screw terminals, 3 changeover contacts

## More information

Homepage, see www.siemens.com/relays
Industry Mall, see www.siemens.com/product?3RQ2
Conversion tool for article numbers, see
www.siemens.com/sirius/conversion-tool
3RQ2 coupling relays in their 22.5 mm industrial enclosure serve to couple control signals to and from a controller and replace the 3RS18 coupling relays. The 3RQ2 has an impressively highquality industrial enclosure finished in modern titanium gray so that it fits in visually with the SIRIUS series of relays.

The series consists of devices with up to three changeover contacts with screw or spring-loaded terminals (push-in) and, with its wide voltage range from 24 to $240 \mathrm{~V} \mathrm{AC/DC}$, is a genuine highlight in the coupling relay market.
Thanks to terminal assignment that is identical to the previous version, existing products can easily be converted.
The reduced variety of components simplifies product selection and standardization.

Numerous accessories are available for the 3RQ2 coupling relays, for example replacement terminals, push-in lugs for wall mounting and coding pins.

## Article No. scheme



Note:
The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

## Benefits

- Permanent wiring thanks to removable terminals in screw or spring-loaded technology (push-in)
- Replacement of individual terminals minimizes wiring effort
- A product for all voltages from 24 to 240 V AC/DC
- Reduced costs thanks to fewer versions
- Especially high contact reliability even at low currents thanks to versions with hard gold-plated contacts
- International standards and certifications including CE, UL/CSA, EAC and confirmations for rail, and more


## Application

- Electrical separation between the input and output circuit
- Adjustment of different signal levels
- Signal amplification
- Contact multiplication


[^48]
## Technical specifications

More information		
Technical specifications, see https://support.industry.siemens.com/cs/ww/en/ps/25158/td	Operating Instructions, see https://support.industry.siemens.com/cs/ww/en/ps/25158/man	
Type	3RQ2000-.AW00 3RQ2000-.BW00 3RQ2000-.CW00	3RQ2000-.CW01
General data		
Dimensions (W x H x D)	$22.5 \times 100 \times 90$	
Insulation voltage for overvoltage category III acc. to IEC 60664 for pollution degree 3	300	
Max. permissible voltage for protective separation between control circuit and auxiliary circuit acc. to IEC 60947-1	300	
Ambient temperature		
- During operation ${ }^{\circ} \mathrm{C}$	$-40 \ldots+60$	
- During storage ${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$	
Degree of protection IP	IP20	
Control circuit		
Control supply voltage V	24 ... 240 AC/DC; 50/60 Hz	
Operating range factor of control supply voltage	0.7 ... 1.1	
Load circuit		
Thermal current of the non-solid-state contact blocks, maximum A	5	
Current carrying capacity of the output relay		
- At AC-15 at 250 V - A	3	
- At DC-13 at 24 V - A	1	
- At DC-13 at 125 V - A	0.2	
- At DC-13 at 250 V A	0.1	
Mechanical endurance (operating cycles) typical	10000000	
Electrical endurance (operating cycles) for AC-15 at 230 V , typical	100000	
Material of switching contacts	AgSnO2	$\mathrm{AgNi}+\mathrm{Au}$
Type	3RQ2000-1	3RQ2000-2
Type of electrical connection	Screw terminals	00 Spring-loaded terminals (push-in)
Type of connectable conductor cross-sections		
- Solid	$1 \times\left(0.5 \ldots 4 \mathrm{~mm}^{2}\right), 2 \mathrm{l}$ (0.5 ... $2.5 \mathrm{~mm}^{2}$ )	1x (0.5 ... $4 \mathrm{~mm}^{2}$ )
- Finely stranded with end sleeve	$1 \times\left(0.5 \ldots 4 \mathrm{~mm}^{2}\right), 2 \mathrm{x}\left(0.5 \ldots 1.5 \mathrm{~mm}^{2}\right)$	$1 \times\left(0.5 \ldots 2.5 \mathrm{~mm}^{2}\right)$
- Solid for AWG cables	$1 \times(20 \ldots 12), 2 \times(20 \ldots 14)$	1x (20 ... 12)
Tightening torque Nm	0.6 ... 0.8	--

# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Coupling relays 

## SIRIUS 3RQ2 coupling relays with industrial enclosure

## Selection and ordering data



## Accessories

## More information

Operating Instructions, see
Conversion tool for article numbers, see
https://support.industry.siemens.com/cs/ww/en/ps/25158/man
www.siemens.com/sirius/conversion-tool

Version	SD Article No.	Price   per PUPU   (UNIT,   SET, M)	PS*

Terminals for SIRIUS devices in the industrial standard mounting rail enclosure


Removable terminals

- 2-pole, up to $1 \times 4 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$

3ZY1122-1BA00

## Accessories for enclosures

Hinged cover
Replacement cover, without terminal labeling,

Replacement cover, without ter
titanium gray, 22.5 mm wide


3ZY1450-1AB00


3ZY1311-0AA00

## Tools for opening spring-loaded terminals



## Screwdrivers

For all SIRIUS devices with spring-loaded terminals
$3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$,
length approx. 200 mm , titanium gray/black, partially insulated
Coding pins 2
For removable terminals of SIRIUS devices in the industrial standard mounting rail enclosure, they enable the mechanical coding of terminals

For all SIRIUS

考

Screw terminals	$\ddots$			
3ZY1122-1BA00	1	6 units	41 L	
Spring-loaded terminals   (push-in)	0			
3ZY1122-2BA00		1	6 units	41 L
3ZY1450-1AB00	1	5 units	41 L	

$\left.\begin{array}{llllll}\begin{array}{l}\text { Spring-loaded terminals } \\ \text { (push-in) }\end{array} & \mathrm{OO}\end{array}\right)$

## More information

## Code conversion table

SIRIUS 3RS18 coupling relays				Comparison type SIRIUS 3RQ2 coupling relays			
Screw terminals	Spring-loaded terminals	Version	Contacts	Screw terminals	Spring-loaded terminals (push-in)	Version	Contacts
3RS1800-1AQ00	3RS1800-2AQ00	24 V AC/DC; 110 ... 120 V AC	$\begin{aligned} & 1 \mathrm{CO} \\ & - \text { contact } \end{aligned}$	3RQ2000-1AW00	3RQ2000-2AW00	$24 . .240$ V AC/DC	1 CO contact
3RS1800-1AP00	3RS1800-2AP00	$24 \mathrm{VAC/DC} ; 220 . . .240 \mathrm{~V}$ AC					
3RS1800-1BW00	3RS1800-2BW00	$24 . .240$ V AC/DC	$2 \mathrm{CO}$contacts	3RQ2000-1BW00	3RQ2000-2BW00	$24 . .240$ V AC/DC	$2 \mathrm{CO}$   contacts
3RS1800-1BQ00	3RS1800-2BQ00	24 V AC/DC; $110 \ldots 120 \mathrm{~V}$ AC					
3RS1800-1BP00	3RS1800-2BP00	24 V AC/DC; $220 . . .240$ V AC					
3RS1800-1HW00	3RS1800-2HW00	$24 . .240$ V AC/DC	$3 \mathrm{CO}$   contacts	3RQ2000-1CW00	3RQ2000-2CW00	$24 . .240$ V AC/DC	$3 \mathrm{CO}$ contacts
3RS1800-1HQ00	3RS1800-2HQ00	$24 \mathrm{VAC/DC} ; 110$... 120 V AC					
3RS1800-1HP00	3RS1800-2HP00	24 V AC/DC; $220 . . .240 \mathrm{~V}$ AC					
3RS1800-1HW01	3RS1800-2HW01	$24 . .240$ V AC/DC	$3 \mathrm{CO}$   contacts, hard goldplated	3RQ2000-1CW01	3RQ2000-2CW01	$24 . .240$ V AC/DC	3 CO contacts, hard goldplated
3RS1800-1HQ01	3RS1800-2HQ01	24 V AC/DC; 110 ... 120 V AC					
3RS1800-1HP01	3RS1800-2HP01	24 V AC/DC; $220 . . .240$ V AC					

## Switching devices - Contactors and contactor assemblies - Contactor relays and relays Coupling relays

SIRIUS 3RQ3 coupling relays, narrow design

Overview


SIRIUS 3 RQ3 coupling relays

SIRIUS 3RQ3 coupling relays in narrow design are used for coupling control signals from and to a controller, and they are available in different versions:

- Coupling relays with relay output (not plug-in)
- Coupling relays with plug-in relays
- Coupling relays with semiconductor output (not plug-in)

Coupling relays with relay output (not plug-in)

## AC and DC operation

IEC/EN 60947-5-1
The input and output coupling relays differ with regard to the positioning of the terminals and the LEDs.

## Coupling relays with plug-in relays

AC and DC operation
IEC 60947-1
The coupling relays are plug-in, so the relay can be replaced quickly at the end of its service life without detaching the wiring.

## Coupling relays with semiconductor output (not plug-in)

## AC and DC operation

IEC 60947-1, EN 60664-1 and EN 50005; coupling relays with semiconductor output: EN 60747-5; programmable controllers: IEC 61131-2
The input and output coupling relays differ with regard to the positioning of the terminals and the LEDs.
The coupling relays with semiconductor output have extremely high contact reliability, so they are especially suitable for electronic systems.
For test purposes, versions are available with manual-offautomatic switches.

## Article No. scheme



## Switching devices - Contactors and contactor assemblies - Contactor relays and relays Coupling relays

## SIRIUS 3RQ3 coupling relays, narrow design

## Benefits

## General

- All versions with screw terminals or spring-loaded terminals (push-in technology)
- TOP wiring with spring-loaded terminals (push-in) for quick and reliable wiring
- Low space requirements in the control cabinet thanks to a consistent width of 6.2 mm
- Reduced stockkeeping due to fewer variants
- Clearly visible functional state of the coupling relay by green LED
- Integrated reverse polarity protection and EMC arc-suppression diode
- Standardized accessories across the entire 3RQ3 series
- Universal bridging option using connecting combs for all terminals
- Galvanic isolation plate for isolating different voltages for neighboring units
- Clip-on labels available as set for individual labeling


## Coupling relays with relay output (not plug-in)

- Relays fixed in enclosure for increased contact reliability
- Device variants with hard gold-plated contacts, hence high contact reliability at low currents


## Coupling relays with plug-in relays

- Fast replacement of the relays with existing wiring
- Shorter installation times thanks to certified complete units
- Individual relays available as spare parts
- Device variants with hard gold-plated contacts, hence high contact reliability at low currents


## Coupling relays with semiconductor output (not plug-in)

- Long service life since there is no mechanical wear
- High switching frequency thanks to short make-break times
- Vibration-resistant
- No contact bounce
- Extremely high contact reliability
- Noise-free switching
- Low control power required
- Switching of DC and capacitive loads


## Application

- Electrical separation between the input and output circuit
- Adjustment of different signal levels
- Signal amplification


[^49]
## Technical specifications

More information
Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/16198/td

```
Operating Instructions, see
https://support.industry.siemens.com/cs/ww/en/ps/16198/man
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16198/faq
```

Coupling relays with relay output (not plug-in)

Type		$\begin{aligned} & \text { 3RQ30.8- } \\ & \text {.AB00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ30.8- } \\ & . A B 01 \end{aligned}$	$\begin{aligned} & \text { 3RQ30.8- } \\ & . A E 00 \end{aligned}$	$\begin{aligned} & \text { 3RQ30.8- } \\ & . A E 01 \end{aligned}$	$\begin{aligned} & \text { 3RQ30.8- } \\ & \text {.AF00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ30.8- } \\ & . A F 01 \end{aligned}$	$\begin{aligned} & \text { 3RQ3018- } \\ & \text { 2AM08-0AAO } \end{aligned}$	$\begin{aligned} & \text { 3RQ3018- } \\ & \text { 2AN08-0AAO } \end{aligned}$
General technical specifications									
Width x height x depth		$6.2 \times 93 \times 7$	72.5						
Insulation voltage for overvoltage category III acc. to IEC 60664 for pollution degree 3	V	300							
Max. permissible voltage for protective separation between control circuit and auxiliary circuit	V	300							
Ambient temperature									
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$						$-40 \ldots+70$	
- During storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$							
Degree of protection IP		IP20							
Version of the fuse link required for short-circuit protection of the auxiliary switch		Fuse gG: 4							
Operational current of the auxiliary contacts									
- At AC-15									
- At 24 V	A	3							
- At 250 V	A	3							
- At DC-13									
- At 24 V	A	1							
- At 125 V	A	0.2							
- At 250 V	A	0.1							
Contact reliability of the auxiliary contacts (one contact failure per 100 million)		$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	
Mechanical endurance (operating cycles) typical		10000000							
Electrical endurance (operating cycles) for AC-15 at 250 V typical		100000							
Operating range factor of the control supply voltage, rated value									
- At AC									
- At 50 Hz		0.8 ... 1.25		$0.8 \ldots 1.1$				--	
- At 60 Hz		0.8 ... 1.25		$0.8 \ldots 1.1$				--	
- At DC		0.8 ... 1.25		$0.8 \ldots 1.1$				0.7 ... 1.25	
Active power input	W	0.3		0.5		1		0.3	0.6
Thermal current	A	6							
- Note		--						Derating, see curves	characteristic

## temperature

Operating range factor of the control supply voltage, rated value

## Switching devices - Contactors and contactor assemblies - Contactor relays and relays Coupling relays

## SIRIUS 3RQ3 coupling relays, narrow design

## Coupling relays with plug-in relays

Type		$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AB00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AB01 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AE00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AE01 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AF00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AF01 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AM00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AM01 } \end{aligned}$
General technical specifications									
Width $\mathbf{x}$ height $\mathbf{x}$ depth		$6.2 \times 93 \times 7$							
Insulation voltage for overvoltage category III acc. to IEC 60664 for pollution degree 3	V	300							
Max. permissible voltage for protective separation between control circuit and auxiliary circuit	V	300							
Ambient temperature									
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$							
- During storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$							
Degree of protection IP		IP20							
Version of the fuse link required for short-circuit protection of the auxiliary switch		Fuse gG: 4 A							
Operational current of the auxiliary contacts									
- At AC-15									
- At 24 V	A	3							
- At 250 V	A	3							
- At DC-13									
- At 24 V	A	1							
- At 125 V	A	0.2							
- At 250 V	A	0.1							
Contact reliability of the auxiliary contacts (one contact failure per 100 million)		$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$
Mechanical endurance (operating cycles) typical		10000000							
Electrical endurance (operating cycles) for AC-15 at 250 V typical		100000							
Operating range factor of the control supply voltage, rated value									
- At AC									
- At 50 Hz		0.8... 1.25		0.8 ... 1.1				--	
- At 60 Hz		0.8... 1.25		0.8 ... 1.1				--	
- At DC		0.8 ... 1.25		0.8 ... 1.1				0.8 ... 1.25	
Active power input	W	0.3		0.5		1		0.3	
Thermal current	A	6							

Coupling relays with semiconductor output (not plug-in)


# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Coupling relays 

## SIRIUS 3RQ3 coupling relays, narrow design

Selection and ordering data


## Coupling relays with semiconductor output (not plug-in)



Output coupling links


Type of electrical connection

- Screw terminals
- Spring-loaded terminals (push-in)


## Accessories



1) PC labeling system for individual inscription of unit labeling plates available from Conta-Clip Verbindungstechnik GmbH (see page 16/16).

	Coupling relays with plug-in relay	Control supply voltage	Material of switching contacts	Number of CO contacts for auxiliary contacts	SD	Article No.	Price per PU	PU   (UNIT,   SET, M)	PS*	PG
	Type	V			d					
Replacement modules for 3RQ3118 coupling relays with plug-in relay										
	3RQ3118-.AM00	24 DC	AgSnO2	1	2	3TX7014-7BM00		1	15 units	41H
	3RQ3118-.AM01		AgSnO2   hard gold-plated		2	3TX7014-7BM02		1	15 units	41H
	3RQ3118-.AB00	24 AC/DC	AgSnO2	1	2	3TX7014-7BM00		1	15 units	41H
	3RQ3118-.AB01		AgSnO2 hard gold-plated		2	3TX7014-7BM02		1	15 units	41H
	3RQ3118-.AE00	115 AC/DC	AgSnO2	1	2	3TX7014-7BP00		1	20 units	41H
	3RQ3118-.AF00	230 AC/DC	AgSnO 2							
	3RQ3118-.AE01	115 AC/DC	$\begin{aligned} & \mathrm{AgSnO} 2 \\ & \text { hard gold-plated } \end{aligned}$	1	2	3TX7014-7BP02		1	20 units	41H
	3RQ3118-.AF01	230 AC/DC	AgSnO2 hard gold-plated							

## Switching devices - Contactors and contactor assemblies - Contactor relays and relays Coupling relays

## LZS coupling relays with plug-in relays

## Overview

Coupling relays with plug-in relays can be ordered as complete units or as individual modules for customer assembly.

## Function

The coupling relays with semiconductor output have low power consumption and are therefore particularly well-suited to solid-state systems. In the versions equipped with LEDs, these indicate the switching state. The LZS:PT/MT coupling relays have a test button. This can be used to force the relays into the switching state and to lock it without electrical control. This is indicated by a raised petrol-colored lever.

## Control with solid-state output

In the case of solid-state outputs (e.g. proximity switch) with overload and short-circuit protection, you must make allowance during configuration for the temporarily flowing capacitor charging currents! This is possible, for example, by using a suitable LZS coupling relay with plug-in relay.

## Surge suppression

The 24 V DC relays LZX:RT and LZX:PT with LEDs can be supplied with, all others without integral surge suppression (freewheel diode connected in parallel with A1/A2). The positive control supply voltage must be connected to coil terminal A1.

## Mounting

The relays are plugged into the base and this is snapped onto a TH 35 standard mounting rail according to IEC 60715.

A fixing bracket can be ordered for the MT series that additionally fixes the relay into a plug-in base (under conditions of increased mechanical stress). For the RT and PT series, a combined fixing and ejection bracket is available which can be used to disassemble the relay where access is difficult, for example, when relays are mounted side-by-side.
They can be mounted as required.

## Logical separation

The terminals for the contacts and the terminals for the coil are arranged on separate levels, e.g. above for contacts and below for coil. Logical separation is not necessarily protective separation.

## Protective separation

For protective separation, transfer of the voltage of one circuit to another circuit is prevented to a suitable degree of safety (requirements and tests are described in IEC 60947-1 in Appendix N).

## Notes on the previous LZX series

The complete units and accessory parts of the LZX series are no longer listed in this catalog. The complete units of the LZS series are fully compatible with the corresponding units of the LZX series. Prices for the LZS series are lower than for the previous LZX series
The LZX plug-in relays are available unchanged and are used accordingly in both the LZS and the LZX series.

Note:
Due to differences in geometry, the LED modules, plug-in bases, fixing brackets and labels can be combined and/or used only in the respective series, LZS or LZX.
The LZS series offers not only service-proven screw connections but also versions with plug-in terminals (push-in).

## Technical specifications



- Finely stranded with end sleeve
$\mathrm{mm}^{2} 1 \times(0.75 \ldots 1.0), 2 \times 0.75,1 \times 1.5$

1) AC voltages, 50 Hz ; for 60 Hz operation, the lower response value must be increased by $10 \%$; the power loss will decrease slightly.

## Switching devices - Contactors and contactor assemblies - Contactor relays and relays Coupling relays

## LZS coupling relays with plug-in relays

Relay type		LZX:RT print relay, 8-pole, ( 12.7 mm ) $1 \mathrm{CO} / 2 \mathrm{CO}$				LZX:PT industrial relay, 8-, 11- and 14-pole, $(22.5 \mathrm{~mm}) 2 \mathrm{CO} / 3 \mathrm{CO} / 4 \mathrm{CO}$			
Rated control supply voltage $U_{s}{ }^{1}$ )	V	24 DC	24 AC	115 AC	230 AC	24 DC	24 AC	115 AC	230 AC
Control side									
Operating range factor		$0.9 \ldots 1.4$	$0.9 \ldots 1.1$			$0.9 \ldots 1.4$	$0.9 \ldots 1$		
Power consumption at $U_{s}$									
- AC	VA	--	0.75			--	1		
- DC	W	0.4	--			0.75	--		
Release voltage	V	2.4	3.6	17.3	34.5	2.4	7.2	34.5	69
Protection circuit		Freewheel diode for complete unit	--			Freewheel diode   in LED   module	--		
Load side									
Switching voltage AC/DC	V	24... 250							
Rated currents ${ }^{2}$ )									
- Conventional thermal current $I_{\text {th }}$   - 1 CO contact   - 2 CO contacts   - 3 CO contacts   - 4 CO contacts	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 8 \\ & -- \end{aligned}$				$\begin{aligned} & -- \\ & 12 \\ & 10 \\ & 6 \end{aligned}$			
- Rated operational current $I_{\mathrm{e}} / \mathrm{AC}-15 \mathrm{acc}$. to utilization categories (IEC 60947-5-1)   - 1 CO contact   - 2 CO contacts   - 3 CO contacts   - 4 CO contacts	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & -- \\ & -- \end{aligned}$	3			$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$		
- Rated operational current $I_{\mathrm{e}}$ DC-13 with suppressor diode acc. to utilization categories (IEC 60947-5-1)	A	$\begin{aligned} & 2 \text { at } 24 \mathrm{~V}, \\ & 0.27 \text { at } 230 \end{aligned}$				PT2, PT3, 4 at 24 V , 0.5 at 230			
Short-circuit protection									
Short-circuit test with fuse links of operational class gG with short-circuit current $I_{\mathrm{k}}=1 \mathrm{kA}$ acc. to IEC 60947-5-1									
- DIAZED, type 5SB	A	10				6			
Min. contact load (reliability: 1 ppm )		Standard 1 hard gold-p	$\begin{aligned} & \mathrm{V}, 10 \mathrm{~mA} ; \\ & \text { lated } 17 \mathrm{~V} \end{aligned}$	$1 \mathrm{~mA}$		Standard 17 hard gold-p	V, 10 m ated 20		
Mechanical endurance									
-1 CO contact	Operating cycles	$30 \times 10^{6}$	$10 \times 10^{6}$	$1 \times 10^{5}$	$7 \times 10^{4}$	$30 \times 10^{6}$	$20 \times 10$		
- 2 CO contacts	Operating cycles	$30 \times 10^{6}$	$5 \times 10^{6}$	$1 \times 10^{5}$	$8 \times 10^{4}$	$30 \times 10^{6}$	$20 \times 10$		
- 3 CO contacts	Operating cycles	--				$30 \times 10^{6}$	$20 \times 10$		
- 4 CO contacts	Operating cycles	--				$30 \times 10^{6}$	$20 \times 10$		
Electrical endurance (resistive load at 250 V AC)									
-1 CO contact	Operating cycles	$1 \times 10^{5}$	$7 \times 10^{4}$			--			
- 2 CO contacts	Operating cycles	$1 \times 10^{5}$	$8 \times 10^{4}$			$180 \times 10^{3}$			
- 3 CO contacts	Operating cycles	--				$180 \times 10^{3}$			
- 4 CO contacts	Operating cycles	--				$250 \times 10^{3}$			

1) AC voltages, 50 Hz ; for 60 Hz operation, the lower response value must be increased by $10 \%$; the power loss will decrease slightly.
${ }^{2)}$ Capacitive loads can result in micro-welding on the contacts


Switching devices - Contactors and contactor assemblies - Contactor relays and relays
Coupling relays
LZS coupling relays with plug-in relays
Selection and ordering data


Note:
Logical separation: The terminals for the contacts and the terminals for the coil are arranged on separate levels, e.g. above for contacts and below for the coil. Logical separation is not necessarily protective separation.
Protective separation: Protective separation prevents voltage of one circuit affecting another circuit with sufficient protection (IEC 61140).


1) The test bracket is designed to be non-latching. If the test bracket is pressed further until $90^{\circ}$ has been reached, two small lugs break off and the test bracket can be latched in position.
Note:
Logical separation: The terminals for the contacts and the terminals for the coil are arranged on separate levels, e.g. above for contacts and below for the coil. Logical separation is not necessarily protective separation.
Protective separation: Protective separation prevents voltage of one circuit affecting another circuit with sufficient protection (IEC 61140).

# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Coupling relays 

## LZS coupling relays with plug-in relays



Note:

Logical separation: The terminals for the contacts and the terminals for the coil are arranged on separate levels, e.g. above for contacts and below for the coil. Logical separation is not necessarily protective separation.

Protective separation: Protective separation prevents voltage of one circuit affecting another circuit with sufficient protection (IEC 61140).

SITOP DC power supplies such as 6EP1331-5BA00 or 6EP1331-5BA10 can be used for unavailable coil voltages, see page 15/1 or Catalog KT 10.1.


Note:
Logical separation: The terminals for the contacts and the terminals for the coil are arranged on separate levels, e.g. above for contacts and below for the coil. Logical separation is not necessarily protective separation.
Protective separation: Protective separation prevents voltage of one circuit affecting another circuit with sufficient protection (IEC 61140).

# Switching devices - Contactors and contactor assemblies - Contactor relays and relays Coupling relays 

## LZS coupling relays with plug-in relays

	Version	Rated control supply voltage $U_{\mathrm{S}}$ at $50 / 60 \mathrm{~Hz} \mathrm{AC}$	Contacts, number of CO contacts	Width	SD	Article No.	Price per PU		PS*	PG
		V		mm	d					
Individual modules for customer assembly, RT series										
LZX:RT314024	Print relays   With hard gold-plating									
		$\begin{aligned} & 24 \mathrm{DC} \\ & 230 \mathrm{AC} \end{aligned}$	1	12.7	$15$	LZX:RT315024   LZX:RT315730		1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{H} \\ & 41 \mathrm{H} \end{aligned}$
	Print relays									
	Version with 1 CO contact									
		24 DC	1	12.7	-	LZX:RT314024		1	1 unit	41H
		24 AC			15	LZX:RT314524		1	1 unit	41 H
		115 AC			15	LZX:RT314615		1	1 unit	41 H
		230 AC			-	LZX:RT314730		1	1 unit	41 H
LZS:RT78725	Version with 2 CO contacts									
		12 DC	2	12.7	2	LZX:RT424012		1	1 unit	41 H
		24 DC			$\stackrel{\rightharpoonup}{*}$	LZX:RT424024		1	1 unit	41H
$\cdots$		24 AC			-	LZX:RT424524		1	1 unit	41 H
		115 AC			-	LZX:RT424615		1	1 unit	41 H
		230 AC			$\checkmark$	LZX:RT424730		1	1 unit	41H
	Standard plug-in bases For mounting onto TH 35	standard mounting				Screw terminals	(1)			
		--	--	15.5	-	LZS:RT78725		1	1 unit	41H
	Plug-in bases with logical separation		For mounting onto TH 35 standard mounting rail							
LZS:RT78726		--	--	15.5	-	LZS:RT78726		1	1 unit	41H
$5$	Plug-in bases with logic For mounting onto TH 35	cal separation standard mounting				Plug-in terminals (push-in)	a			
		--	--	15.5	-	LZS:RT7872P		1	1 unit	41H
	LED modules									
	- Red									
	With freewheel diode	24 DC	--	15.5	$\checkmark$	LZS:PTML0024		1	1 unit	41H
	Without freewheel diode	$\begin{aligned} & 24 \text { AC/DC } \\ & 110 \ldots 230 \mathrm{AC} \end{aligned}$	--		$\stackrel{\square}{\square}$	LZS:PTML0524   LZS:PTML0730		1	1 unit 1 unit	41 H 41 H
LZS:RT7872P	- Green	110 ... 230 AC			-			1		
$\xrightarrow{7}$	With freewheel diode	24 DC	--	15.5	$\checkmark$	LZS:PTMG0024		1	1 unit	41H
	Without freewheel diode	$\begin{aligned} & 24 \mathrm{AC} / \mathrm{DC} \\ & 110 \ldots 230 \mathrm{AC} \end{aligned}$	--		$>$	LZS:PTMG0524   LZS:PTMG0730		1 1	1 unit   1 unit	$\begin{aligned} & 41 \mathrm{H} \\ & 41 \mathrm{H} \end{aligned}$
S:PTML0024	Fixing/ejection brackets for RT base									
		--	--	15.5	-	LZS:RT17016		100	10 units	41H
	Labels									
LZS:RT17016		--	--	15.5	-	LZS:RT17040		100	10 units	41H
	RC elements									
		$\begin{aligned} & 6 \ldots 60 \mathrm{AC} \\ & 110 \ldots 230 \mathrm{AC} \end{aligned}$	--	15.5	$\stackrel{\rightharpoonup}{\square}$	LZS:PTMU0524   LZS:PTMU0730		1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{H} \\ & 41 \mathrm{H} \end{aligned}$
LZS:RT17040	Freewheel diodes with connection to A1									
		$6 \ldots 230$ DC	--	15.5	$\checkmark$	LZS:PTMTOOAO		1	1 unit	41H
	Connecting combs for R	RT screw base								
	8 -pole, 10 A current carrying capacity, natural-colored	--	--	--	-	LZS:RT170R8		1	10 units	41H
LZS:PTMU0730	Connecting brackets for push-in base									
	2-pole,   10 A current carrying capacity, natural-colored	--	--	--	5	LZS:RT170P1		100	10 units	41H

Note:
SITOP DC power supplies such as 6EP1331-5BA00 or 6EP1331-5BA10 can be used for unavailable coil voltages, see page 15/1 or Catalog KT 10.1.


	Price groups
	PG 14O, 41B, 41C, 41E, 41H, 41L, 42G,
	42J, 42S


	Solid-state switching devices for resistive/inductive loads
6/115	General data
	Solid-state relays
6/119	General data
6/120	SIRIUS 3RF21 solid-state relays, 1-phase, 22.5 mm
6/126	SIRIUS 3RF20 solid-state relays, 1-phase, 45 mm
6/130	SIRIUS 3RF22 solid-state relays,   3-phase, 45 mm   Solid-state contactors
6/133	General data
6/134	SIRIUS 3RF23 solid-state contactors, 1-phase
6/144	SIRIUS 3RF24 solid-state contactors, 3-phase
	Function modules
6/148	General data
6/150	SIRIUS converters for 3RF2
6/151	SIRIUS load monitoring for 3RF2
6/152	SIRIUS heating current monitoring for 3RF2
6/153	SIRIUS power controllers for 3RF2
6/155	SIRIUS power regulators for 3RF2
	Solid-state switching devices for switching motors
	Solid-state contactors
6/157	General data
6/160	SIRIUS 3RF34 solid-state contactors, 3-phase
6/164	SIRIUS 3RF34 solid-state reversing contactors, 3-phase

Switching devices - Soft starters and solid-state switching devices

## Introduction

## Overview

## More information

Homepage, see www.siemens.com/sirius-soft-starter Industry Mall, see www.siemens.com/product?3RW
TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=Sirius3rwFolder

Industry Online Support (SIOS) topic page, see https://support.industry.siemens.com/cs/ww/en/view/109747404 Simulation Tool for Soft Starters (STS), see page 6/9 or https://support.industry.siemens.com/cs/ww/en/view/101494917


3RW soft starters

## High Performance soft starters

3RW55 soft starters - TIA integration optional

- Plug-in communication modules for PROFINET, PROFIBUS, EtherNet/IP and Modbus
- Removable HMI module with color display, local interface and slot for a micro SD memory card
- Extended protection functions
- Up to 1200 kW at 400 V (can be used in supply systems up to 690 V )
- Automatic parameterization for simple commissioning and reliability even under changing load conditions
- Hybrid switching technology for minimum power loss and 3-phase motor control for optimum/symmetrical motor control
- Pump stop for reduced mechanical loading and optimum pump stop control
- ATEX/IECEx certification

3RW55 Failsafe soft starters

- TIA integration optional
- Plug-in communication modules for PROFINET, PROFIBUS, EtherNet/IP and Modbus
- Removable HMI module with color display, local interface and slot for a micro SD memory card
- Extended protection functions
- Up to 560 kW at 400 V (can be used in supply systems up to 480 V )
- SIL 1 - PL c / STO without additional components
- SIL 3 - PL e / STO with additional contactor and safety relay
- Hybrid switching technology for minimum power loss and 3-phase motor control for optimum/symmetrical motor control
- Pump stop for reduced mechanical loading and optimum pump stop control
- ATEX/IECEx certification

3RW55..-.HA.. 6/14

3RW55..-.HF.. 6/38

- TIA integration optional
3RW52 $6 / 54$
- Plug-in communication modules for PROFINET, PROFIBUS, EtherNet/IP and Modbus
- HMI modules optional
- Soft starting and stopping
- Current limiting
- Motor overload protection (optionally with thermistor motor protection)
- Analog output (optional)
- Up to 560 kW at 400 V (can be used in supply systems up to 600 V )
- Hybrid switching technology for minimum power loss and 3-phase motor control for optimum/symmetrical motor control
- Soft Torque for reduced mechanical loading and optimum pump stop
- Parameterization using potentiometers


## Switching devices - Soft starters and solid-state switching devices



3RW55


3RW55 Failsafe


3RW52


3RW50


3RW40
Article No.


3RW30
3RW soft starters
Basic Performance soft starters

3RW50 soft starters	- TIA integration optional   - Communication modules for PROFINET, PROFIBUS, EtherNet/IP and Modbus   - HMI modules optional   - Soft starting and stopping   - Current limiting   - Motor overload protection (optionally with thermistor motor protection)   - Analog output (optional)   - Up to 315 kW at 400 V (can be used in supply systems up to 600 V )   - Hybrid switching technology for minimum power loss and 2-phase motor control   - Soft Torque for reduced mechanical loading and optimum pump stop   - Parameterization using potentiometers   - ATEX/IECEx certification	3RW50	6/72
3RW40 soft starters	- Soft starting and stopping   - Current limiting   - Motor overload protection (optionally with thermistor motor protection)   - Up to 55 kW at 400 V (can be used in supply systems up to 600 V )   - Hybrid switching technology for minimum power loss and 2-phase motor control   - ATEX certification	3RW40	6/83
3RW30 soft starters	- Soft starting with voltage ramp   - Up to 55 kW at 400 V (can be used in supply systems up to 480 V )	3RW30	6/95

Use of SIRIUS 3RW soft starters in conjunction with IE3/IE4 motors

Note:
For the use of SIRIUS 3RW soft starters in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring,
see Application Manual.
For more information, see page 1/8.


## Use of SIRIUS solid-state switching devices for switching motors in conjunction with IE3/IE4 motors

Note:
For the use of SIRIUS 3RF solid-state switching devices for switching motors in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.
For more information, see page 1/8.

Overview

## More information

Homepage, see www.siemens.com/sirius-soft-starter

[^50]Industry Mall, see www.siemens.com/product?3RW
TIA Selection Tool Cloud (TST Cloud), see
https://support.industry.siemens.com/cs/ww/en/view/24230/d
Industry Online Support (SIOS) topic page, see
https://support.industry.siemens.com/cs/ww/en/view/109747404
SIRIUS 3RW soft starters - as versatile as your application


[^51]
## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters

General data



[^52]
## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters

## General data

## Constraints

The 3RW soft starters should always be designed on the basis of the required rated operational current of the motor. The motor ratings listed in the selection and ordering data are rough guide values and designed for basic starting conditions (CLASS 10). For other starting conditions we recommend the Simulation Tool for Soft Starters (STS).
Motor rating data in kW and hp is based on IEC 60947-4-1.
At an installation altitude above 2000 m , the max. permissible operational voltage is reduced to 480 V .


Installation altitude for SIRIUS 3RW soft starters

The selection and ordering data were determined for the following constraints (stand-alone installation without auxiliary fan)

Applications   SIRIUS soft starters		High Performance   3RW55/3RW55-F	General Performance 3RW52	Basic   3RW50	3RW40	3RW30
Constraints						
Maximum starting time	S	20	10			3
Maximum starting current in \% of motor current	$I_{\text {e }}$	300				
Maximum number of starts per hour	1/h	5				20

Simulation Tool for Soft Starters (STS) (see page 14/4)


Easy input of motor and load data
The Simulation Tool for Soft Starters (STS) provides a convenient means of designing soft starters using a simple, quick and easy-to-use interface. Entering the motor and load data will simulate the application and prompt suggestions for suitable soft starters.

- Simple, quick and user-friendly interface
- Detailed and up-to-date Siemens motor database, including IE3/IE4 motors.
- Simulation of heavy starting up to CLASS 30
- Update-capable (e.g. motors, load types, functions)
- Fast simulations with minimum input data
- Immediate, graphical curve charts of start operations with limit values
- Table view of suitable soft starters for the application

The Simulation Tool for Soft Starters (STS) is available as a free download for Windows and as an app (for Android and iOS).
SIRIUS Soft Starter ES (TIA Portal) (see page 14/5)


Easy and clearly arranged parameter setting of the
SIRIUS 3RW44 and 3RW55 soft starters with SIRIUS Soft Starter ES (TIA Portal)
The SIRIUS Soft Starter ES (TIA Portal) software permits quick and easy parameterization, monitoring and diagnostics of SIRIUS 3RW44 and 3RW5 soft starters for service purposes.

- Transparent setting of the device functions and their parameters - online and offline
- Effective diagnostic functions on the soft starter and display of the most important measured values
- Trace function (oscilloscope function) for recording measured values and events (in the Standard and Premium software versions)
- Time savings through shorter startup times
- Fast, low-cost licensing using a simple licensing procedure (also available online)
SIRIUS 3RW Soft Starter block library for SIMATIC PCS 7 (see page 14/7)


Faceplate of the motor block
The SIRIUS 3RW Soft Starter block library for PCS 7 can be used for simple and convenient integration of SIRIUS 3RW44, 3RW52 and 3RW55 soft starters into the SIMATIC PCS 7 process control system.
The SIRIUS 3RW Soft Starter block library for PCS 7 contains the diagnostics and driver blocks that correspond to the SIMATIC PCS 7 diagnostics and driver concept as well as the elements (symbols and faceplates) required for operator control and process monitoring
SIRIUS Sim (see page 14/23)


SIRIUS Sim 3RW55
The SIRIUS simulation tool can be used to quickly and easily test functions and configurations in an office environment. These configurations can then be loaded directly into real devices.
SIRIUS Sim V2.0 integrates the SIRIUS 3RW55 soft starters with the following features:

- Complete parameterization of the SIRIUS 3RW55 High Performance soft starters
- Complete navigation with the same menu structure as on the HMI
- Optional storage of the parameterization on a micro SD micro SD memory card for transfer to the real soft starter
- Simulation of starting and stopping, including operating phases as well as different fault conditions
SIRIUS Sim is available as a free download.


# Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters 

## General data

## Circuit concept

3-phase controlled SIRIUS 3RW soft starters can be operated in two different types of circuit:

- Inline circuit

The controls for isolating and protecting the motor are simply connected in series with the soft starter. The motor is connected to the soft starter with three cables.

- Inside-delta circuit

The wiring is similar to that of wye-delta starters. The phases of the soft starter are connected in series with the individual motor windings. The soft starter then only has to carry the phase current, amounting to about $58 \%$ of the rated motor current (conductor current)
Comparison of the types of circuit


Inline circuit: Rated current $I_{\mathrm{e}}$ corresponds to the rated motor current $I_{\mathrm{n}}$, three cables to the motor


Inside-delta circuit: Rated current $I_{\mathrm{e}}$ corresponds to approx. $58 \%$ of the rated motor current $I_{\mathrm{n}}$, six cables to the motor (as for wye-delta starters)
Which circuit?
Using the inline circuit involves the lowest wiring outlay. If the soft starter to motor connections are long, this circuit is preferable.

The wiring complexity is twice as high when using the insidedelta circuit, but a smaller device can be used with the same rating. Thanks to the choice of operating mode between the inline circuit and inside-delta circuit, it is always possible to select the most favorable solution.

The braking function is possible only in the inline circuit. The inside-delta circuit cannot be used in 690 V line supplies.

## Configuration

The solid-state 3RW soft starters are designed for normal starting. In case of heavy starting or increased starting frequency, a larger unit must be selected. The 3RW50 and 3RW52 soft starters may be used in isolated supply networks (IT systems) up to 600 V AC and the 3RW55 soft starters even up to 690 V .

For long starting times it is recommended to have a PTC sensor or temperature switch in the motor. This also applies for the ramp-down modes torque control, pump stop and DC braking, because during the ramp-down time in these modes, an additional current loading applies in contrast to free ramp-down.

No capacitive elements are permitted in the motor feeder between the SIRIUS 3RW soft starter and the motor (e.g. no reactive-power compensation equipment). In addition, neither static systems for reactive-power compensation nor dynamic PFC (Power Factor Correction) must be operated in parallel during starting and stopping of the soft starter. This is important to prevent faults arising on the compensation equipment and/or the soft starter.

All elements of the main circuit (such as fuses and controls) should be dimensioned for direct-on-line starting, following the local short-circuit conditions. Fuses and switching devices must be ordered separately. The harmonic component load of the starting current must be taken into consideration for the selection of motor starter protectors (selection of release). Please observe the maximum switching frequencies specified in the technical specifications.

## Notes:

When three-phase motors are switched on, voltage drops occur as a rule on starters of all types (direct-on-line starters, wye-delta starters, soft starters). The infeed transformer must always be dimensioned such that the voltage dip when starting the motor remains within the permissible tolerance. If the infeed transformer is dimensioned with only a small margin, it is best for the control voltage to be supplied from a separate circuit (independently of the main voltage) in order to avoid the potential switching off of the soft starter.

For dimensioning soft starters, we recommend our Simulation Tool for Soft Starters (STS), see page 6/9 or our Technical Support,
www.siemens.com/support-request.
Recommended parameters for the initial commissioning of our SIRIUS 3RW soft starters are listed in every report of our Simulation Tool for Soft Starters (STS). In addition, our High Performance soft starters provide support by means of their commissioning wizards.

## Motor feeders with soft starters

The type of coordination according to which the motor feeder with soft starter is mounted depends on the application-specific requirements. Normally, fuseless mounting (combination of motor starter protector and soft starter) is sufficient.

If type of coordination "2" is to be fulfilled, then semiconductor fuses must be fitted in the motor feeder.

Type of coordination "1" according to IEC 60947-4-1: After a short-circuit incident, the unit is defective and therefore unsuitable for further use (protection of persons and system guaranteed).
$\left[\begin{array}{c}\text { ToC } \\ 2\end{array}\right]$ Type of coordination "2" according to IEC 60947-4-1: After a short-circuit incident the unit is suitable for further use (protection of persons and system guaranteed).

The type of coordination refers to soft starters in combination with the stipulated protective device (motor starter protector/fuse), not to any additional components in the feeder.

The types of coordination are indicated in the corresponding tables by the symbols shown on orange backgrounds.

## Feeder tests and events

To keep the scope of feeder tests with SIRIUS 3RW soft starters within economically reasonable limits, tests were conducted with feeder components (motor starter protectors/circuit breakers, fuses) that cover the greatest number of use cases (different soft starter versions depending on, for example, line voltage, type of circuit, or necessary overdimensioning). For the combined tests that were conducted, the values for the short-circuit breaking capacity $I_{\mathrm{q}}$ in kA were determined and documented.
If the short-circuit breaking capacity is the same, of course, smaller circuit breakers or fuses can also be used for the selected soft starter provided the dimensioning of the shortcircuit components is suitable for the connected three-phase motor and the line protection for the cables used. For type of coordination "2" (with semiconductor protection), it is also necessary to compare the characteristics because the protection function would no longer be completely ensured if too small a fuse were selected. If the soft starter does not have a motor protection function, the motor protection must also be dimensioned appropriately.

## Setting the motor current

If circuit breakers with an overload release are used (e.g. SIRIUS 3RV20 motor starter protector), we recommend activating the motor protection function of the SIRIUS 3RW soft starter to protect the motor and setting the soft starter to the rated operational current $I_{\mathrm{e}}$ of the motor. We recommend setting the circuit breaker in such a way that it provides line protection but does not usually trip before the soft starter when a motor overload occurs.

## Line protection and motor protection

Line protection and motor protection are not ensured in all operating cases, depending on:

- How the motor feeder is constructed (e.g. with fuses or motor starter protectors)
- Whether the SIRIUS 3RW soft starters are operated within the specification relevant for the tests (IEC 60947-4-2)
- Or whether the documented constraints (see page 6/8) have been observed

There are operating states of the thyristors (caused, for example, by high starting frequencies or heavy starting) that do not permit an overload to be disconnected by the SIRIUS 3RW soft starter. These cases are very rare but can not be ruled out in all cases.
In accordance with IEC 60947-4-2, the SIRIUS 3RW soft starters are dimensioned and checked for operation with up to 8 times the rated operational current $I_{\mathrm{e}}$. For currents larger than this, reliable disconnection of an overcurrent by the SIRIUS 3RW soft starter is not ensured. Such large overcurrents have to be disconnected by a switching device at a higher level (e.g. by a circuit breaker or a fuse in conjunction with an optional line contactor).
Motor protection by the SIRIUS 3RW soft starter is ensured for currents up to 8 times the rated operational current $I_{\mathrm{e}}$ in any case. Line protection is covered by the line-side motor starter protector/circuit breaker or fuse.
These motor feeder components must be dimensioned accordingly and the cable cross-sections must be chosen to match.

## Line protection

Line protection in motor feeders with soft starters is always covered by a fuse or a circuit breaker both in case of an overload and in case of a short circuit. The circuit breaker must have an overload release. That is the case for motor starter protectors (e.g. SIRIUS 3RV20).

Circuit breakers without an overload release (e.g. SIRIUS 3RV23 motor starter protectors) must not be used because they do not provide overload protection. The feeder tests for these were therefore not performed. If the motor feeder with SIRIUS 3RW soft starters is configured without a fuse, motor starter protectors must be used that ensure tripping on an overload in all cases.

## Motor protection

If fuses are used to provide protection against overload and short circuit of the cables, the motor is protected by the SIRIUS 3RW soft starter. If the constraints (simple starting conditions CLASS 10, listed maximum values for starting current, starting time and number of starts per hour) of page 6/8 are observed, the motor feeders can be configured according to IEC as described in the section about soft starters (an optional line contactor is not required). If these preconditions are met, the SIRIUS 3RW soft starters are able to trip on overloads to protect the motor in any case.
In other starting conditions and on heavy starting, the following must be considered:

## Trip classes

Tested fuseless switchgear assemblies comprising SIRIUS 3RW soft starters and motor starter protectors only comply with CLASS 10.
To configure tested motor feeders, for example, for CLASS 20 or CLASS 30, fuses must be used together with SIRIUS 3RW soft starters.

## Line contactor

In applications with high starting frequencies or heavy starting as of CLASS 20, we recommend combining fuses with the use of a line contactor on the line side so that a motor overload is disconnected by the fault signaling contact of the soft starter in any case (that is, even in rare cases in which disconnection by the SIRIUS 3RW soft starter is no longer possible due to the operating state of the thyristors).

# Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters 

## General data

## ATEXIIECEx-certified motor overload protection

Ambient temperature during operation
The SIRIUS 3RW soft starters are approved for operation in a temperature range of -25 to $+60^{\circ} \mathrm{C}$.
Please take into account derating of the rated operational current for ambient temperatures above $40^{\circ} \mathrm{C}$.

For more information, see Equipment Manual and the technical product data sheet of the selected soft starter.
Trip class (electronic overload protection)
The motor and cables must be dimensioned for the selected trip class.
The rated data of the soft starters refers to normal starting (CLASS 10). For heavy starting (> CLASS 10), the soft starter may need to be overdimensioned as only a rated motor current that is lower than the soft starter rated current can be set.

## Short-circuit protection

The SIRIUS 3RW soft starter does not have short-circuit protection. Short-circuit protection must be ensured.

## Line protection

Avoid impermissibly high cable surface temperatures by correctly dimensioning the cross-sections.
The cable cross-section must be adequately dimensioned.

Line contactor or additional undervoltage release on the motor starter protector
In many ATEX/IECEx applications no additional measures (e.g. the use of a line contactor) are necessary with regard to the motor feeder configuration.

The operation of the selected soft starter may, depending on the amplitude of the line voltage and the type of motor connection (inline circuit or inside-delta circuit), result in the loss of the certified motor overload protection according to ATEX/IECEx if one of the two remedial measures listed below is not implemented.

Remedial measures

- An additional line contactor in the main circuit
- An additional undervoltage release for a motor feeder configuration with a motor starter protector
The line contactor or the undervoltage release are connected to error outputs 95, 96 and 98 of the selected soft starter
Note:
For ATEX/IECEx applications, the accompanying information on parameterization and commissioning must be observed in the ATEX/IECEx chapters of the Equipment Manual for the selected soft starter.


## Article No. scheme



## Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders please use the article numbers quoted in the selection and ordering data.

## Can be flexibly deployed in many applications

Strong portfolio:
Wide range of matching products


- The right hardware for all requirements,
soft starters for tasks ranging from simple to demanding starting in Basic, General and High Performance versions
- Extensive portfolio for individual expansion:

Optional HMIs for installation in the device or mounting on the control cabinet door

- Communication via PROFINET, PROFIBUS, EtherNet/IP and Modbus
- Design enclosure with removable terminals, space-saving thanks to compact design and rugged thanks to coated printed circuit boards
- Can be used worldwide thanks to numerous certificates and approvals: IEC, UL, CSA, CCC, ATEX/IECEx, shipbuilding

Efficient switching:
hybrid switching technology on board


- Energy-efficient switching and mechanical protection of the drive train thanks to soft starters with hybrid switching technology
- Low-wear switching extends the service life of the devices
- Soft starting prevents current peaks, thereby increasing the network stability
- Protection against disturbances in the application:

Mechanical protection for the drive train

Intelligent operation:
concentrated, application-specific functionality


- Can be used in a wide variety of applications: Pumping, ventilating, compressing, moving and processing
- Integrated, self-learning automatic parameterization depending on motor starting conditions
- Application-specific functionality such as pump cleaning and pump stop
- Condition monitoring

Current and power monitoring with warning and alarm limits, starting time monitoring

Ready for a digital future:
data available whenever and wherever needed


- Support from tools and data during engineering
- Simulation Tool for Soft Starters for support during product selection
- Very simple, standardized commissioning and configuration via Soft Starter ES in TIA Portal
- Integration in the automation system via communication interfaces
- Data availability and analysis:
large volumes of data at any time and anywhere, even into MindSphere


## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> High Performance soft starters

## 3RW55 soft starters > General data

## Overview

## More information

Homepage, see www.siemens.com/sirius-soft-starter
Industry Mall, see www.siemens.com/product?3RW55
TIA Selection Tool Cloud (TST Cloud), see
https://www. siemens.com/tstcloud/?node=3rw55
Industry Online Support (SIOS) topic page, see
https://support.industry.siemens.com/cs/ww/en/view/109747404

Simulation Tool for Soft Starters (STS), see page 6/9 or
https://support.industry.siemens.com/cs/ww/en/view/101494917
SIRIUS Soft Starter ES (TIA Portal), see page 6/9 or
https://support.industry.siemens.com/cs/ww/en/view/24230/dl
SIRIUS 3RW Soft Starter block library for SIMATIC PCS 7, see page 6/9 or https://support.industry.siemens.com/cs/ww/en/view/109770336 SIRIUS Sim, see page 6/9 or https://support.industry.siemens.com/cs/ww/en/view/109763750


Equipped with the utmost functionality, the SIRIUS 3RW55 High Performance soft starters confidently handle even difficult starting and stopping operations. Thanks to innovative torque control, the device can be used for drives with an output of between 5.5 kW and 1200 kW (at 400 V ).
The functions have been specially designed to offer maximum user friendliness. The HMI (with color display, local interface and a slot for micro SD memory card) and plug-in communication modules (PROFINET, PROFIBUS, EtherNet/IP and Modbus) ensure maximum flexibility.
With their modern hybrid switching technology, the SIRIUS 3RW55 soft starters offer efficient switching for long-term, energy-saving use.

SIRIUS 3RW55 soft starters device family


SIRIUS 3RW55 High Performance soft starter with accessories (see page 6/36)

Switching devices - Soft starters and solid-state switching devices
SIRIUS 3RW soft starters
High Performance soft starters
3RW55 soft starters > General data
Benefits


Product characteristics / function	Performance features / benefits
Automatic parameterization	Extremely easy commissioning and reliability even under changing   load conditions
Hybrid switching technology and 3-phase motor control	Minimum power loss and optimum/symmetrical motor control
Integration into TIA Portal - communication modules optional	Efficient configuration and maximum flexibility in automation engineering
Removable HMI with color display, local interface, slot for micro SD   memory card	Maximum flexibility with regard to user interface and intuitive menu guidance
Pump stop and torque control	Ruitable for the starting of explosion-proof motors
Certified according to ATEX/IECEx directive	

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters High Performance soft starters

## 3RW55 soft starters > General data

Technical specifications

More information							
Technical specifications, see https://support.industry.siemens.com/cs/ww/en/ps/25099/td Equipment Manual, see https://support.industry.siemens.com/cs/ww/en/view/109753752			FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/25099/faq Simulation Tool for Soft Starters (STS), see page 6/9 or https://support.industry.siemens.com/cs/ww/en/view/101494917				
Type	$\begin{aligned} & \text { 3RW551.-HA. } 4 \\ & \text { 3RW551.-.HA. } 5 \end{aligned}$	$\begin{aligned} & \text { 3RW552.-.HA. } 6 \\ & \text { 3RW553.-.HA. } 6 \end{aligned}$	$\begin{aligned} & \text { 3RW552.-.HA. } 4 \\ & \text { 3RW553.-.HA. } 4 \end{aligned}$	3RW554.-.HA. 4	3RW554.-.HA. 6	3RW555.-.HA. 4	3RW555.-.HA. 6
Installation/fixing/ dimensions							
Width $\mathbf{x}$ height $\mathbf{x}$ depth mm	$170 \times 275 \times 152$	$185 \times 306 \times 203$		$210 \times 393 \times 203$		$478 \times 764 \times 241$	
Type of mounting	Screw fixing						
Mounting position	Vertical (can be rotated $+/-90^{\circ}$ and tilted $+/-22.5^{\circ}$ forward or backward)						
Distance to be maintained with side-by-side mounting							
- Above mm	100						
- At the side mm	5						
- Below mm	75						
Maximum installation m altitude above sea level ${ }^{1 \text { ) }}$	5000	2000	5000		2000	5000	2000
Degree of protection IP on the front acc. to IEC 60529	IP20	IP00 (IP20 with cover)				IP00	
Touch protection on the front   acc. to IEC 60529	Finger-safe for vertical touching from the front	Finger-safe for vertical touching from the front with cover				--	
Ambient conditions							
Ambient temperature							$-25 \ldots+60$
- During storage and transport	$-40 \ldots+80$						
Environmental category according to IEC 60721							
- During operation	3K6 (no ice formation, only occasional condensation), 3C3 (no salt mist), 3S2 (sand must not get into the devices), 3M6						
- During storage - During transport	1K6 (only occasional condensation), 1C2 (no salt mist), 1S2 (sand must not get into the devices), 1M4						

- During transport 2K2, 2C1, 2S1, 2M2 (max. height of fall 0.3 m )

1) Derating from 1000 m , see characteristic curve on page 6/8.
2) Note derating above $40^{\circ} \mathrm{C}$.

[^53]
## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters High Performance soft starters

## 3RW55 soft starters > General data

Type		3RW5513	3RW5514	3RW5515	3RW5516	3RW5517
Rated operational current $I_{\text {e }}$	A	13	18	25	32	38
Power electronics						
Load rating with rated operational current $I_{\mathrm{e}}$ IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	32/28.4/26	38/33.5/30.5
Permissible rated motor current and starts/h						
Normal starting (CLASS 10A)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	32/28.4/26	38/33.5/30.5
- $300 \% I_{\mathrm{M}}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$1 / \mathrm{h}$ $1 / \mathrm{h}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$
Normal starting (CLASS 10E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	32/28.4/26	38/33.5/30.5
- $300 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$				
Heavy starting (CLASS 20E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	29.6/27.2/23.6	33.5/30.5/27.5
- $300 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$				
Heavy starting (CLASS 30E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	26/23.6/21.2	29/26/23
- $300 \% I_{M}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$				
- $350 \% I_{\mathrm{M}}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$				
Adjustable rated motor current $I_{\mathrm{M}}$   - Minimum/maximum   - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2.5 / 13 \\ & 4.3 / 22.5 \end{aligned}$	$\begin{aligned} & 3.5 / 18 \\ & 6.1 / 31.1 \end{aligned}$	$\begin{aligned} & 5 / 25 \\ & 8.7 / 43.3 \end{aligned}$	$\begin{aligned} & 6.5 / 32 \\ & 11.3 / 55.4 \end{aligned}$	$\begin{aligned} & 7.5 / 38 \\ & 13 / 65.8 \end{aligned}$

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters
High Performance soft starters
3RW55 soft starters > General data

Type		3RW5521	3RW5524	3RW5525	3RW5526	3RW5527
Rated operational current $I_{\mathrm{e}}$	A	25	47	63	77	93
Power electronics						
Load rating with rated operational current $I_{\mathrm{e}}$ IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a	A	25/22.3/19.6	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
Permissible rated motor current and starts/h Normal starting (CLASS 10A)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	25/22.3/19.6	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{\mathrm{M}}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$				
Normal starting (CLASS 10E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	25/22.3/19.6	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{\mathrm{M}}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$				
Heavy starting (CLASS 20E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	25/22.3/19.6	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$				
Heavy starting (CLASS 30E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	25/22.3/19.6	43.4/38/34.4	53/48/43	68/62/56	82.5/75.5/65
- $300 \% I_{M}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \\ & \hline \end{aligned}$
Adjustable rated motor current $I_{M}$   - Minimum/maximum   - Minimum/maximum in inside-delta circuits	A A	$\begin{aligned} & 5 / 25 \\ & 8.7 / 43.3 \end{aligned}$	$\begin{aligned} & 10 / 47 \\ & 17.3 / 81.4 \end{aligned}$	$\begin{aligned} & 13 / 63 \\ & 22.5 / 109 \end{aligned}$	$\begin{aligned} & 16 / 77 \\ & 27.7 / 133 \end{aligned}$	$\begin{aligned} & 19 / 93 \\ & 32.9 / 161 \end{aligned}$

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters High Performance soft starters

## 3RW55 soft starters > General data

Type		3RW5534	3RW5535	3RW5536
Rated operational current $I_{\text {e }}$	A	113	143	171
Power electronics				
Load rating with rated operational current $I_{\mathrm{e}}$ IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a		113/101/89	143/128/118	171/153/141
Permissible rated motor current and starts				
Normal starting (CLASS 10A)   Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	113/101/89	143/128/118	171/153/141
- $300 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$
- $350 \% I_{\mathrm{M}}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$
Normal starting (CLASS 10E)				
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	113/101/89	143/128/118	171/153/141
- $300 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$
- $350 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$
Heavy starting (CLASS 20E)				
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	109/97/85	128/113/103	141/129/117
- $300 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$
- $350 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$
Heavy starting (CLASS 30E)				
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	89/81/74	108/98/88	117/105/93
- $300 \% I_{M}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$
- $350 \% I_{M}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$
Adjustable rated motor current $I_{\mathrm{M}}$   - Minimum/maximum   - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 23 / 113 \\ & 39.8 / 195 \end{aligned}$	$\begin{aligned} & \text { 29/143 } \\ & 50.2 / 247 \end{aligned}$	$\begin{aligned} & 34 / 171 \\ & 58.9 / 296 \end{aligned}$

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters High Performance soft starters

3RW55 soft starters > General data

Type		3RW5543	3RW5544	3RW5545	3RW5546	3RW5547	3RW5548
Rated operational current $I_{\mathrm{e}}$	A	210	250	315	370	470	570
Power electronics							
Load rating with rated operational current $I_{\mathrm{e}}$   IEC + UL/CSA, individual mounting at 40/50/60 ${ }^{\circ} \mathrm{C}$, AC-53a	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
Permissible rated motor current and starts/h Normal starting (CLASS 10A)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
- $300 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 40 \\ & 17 \end{aligned}$	$\begin{aligned} & 20 \\ & 6 \end{aligned}$			
- $350 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 26 \\ & 10 \end{aligned}$	$\begin{aligned} & 9 \\ & 1 \end{aligned}$			
Normal starting (CLASS 10E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	551/490/445
- $300 \% I_{\mathrm{M}}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 17 \\ & 6 \end{aligned}$	$\begin{aligned} & 8 \\ & 1 \end{aligned}$			
- $350 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 2 \end{aligned}$	$2$			
Heavy starting (CLASS 20E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	162/146/130	200/180/160	231/207/183	258/230/202	272/254/236	284/262/240
- $300 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$					
- $350 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$					
Heavy starting (CLASS 30E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	138/122/106	160/140/120	183/159/135	202/174/160	210/190/170	220/200/180
- $300 \% I_{M}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$					
- $350 \% I_{M}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$					
Adjustable rated motor current $I_{M}$   - Minimum/maximum   - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 42 / 210 \\ & 72.7 / 363 \end{aligned}$	$\begin{aligned} & 50 / 250 \\ & 86.6 / 433 \end{aligned}$	$\begin{aligned} & 63 / 315 \\ & 109.1 / 545 \end{aligned}$	$\begin{aligned} & 74 / 370 \\ & 128.2 / 640 \end{aligned}$	$\begin{aligned} & 94 / 470 \\ & 162.8 / 814 \end{aligned}$	$\begin{aligned} & 114 / 570 \\ & 197.5 / 987 \end{aligned}$

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters High Performance soft starters

## 3RW55 soft starters > General data

Type		3RW5552	3RW5553	3RW5554	3RW5556	3RW5558
Rated operational current $I_{\mathrm{e}}$	A	630	720	840	1100	1280
Power electronics						
Load rating with rated operational current $I_{\mathrm{e}}$   IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a		630/561/510	720/641/580	840/748/670	1 100/979/890	$1280 / 1$ 139/1 030
Permissible rated motor current and starts/h						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	630/561/510	720/641/580	840/748/670	1 100/979/890	1280/1 139/1 030
- $300 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 42 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 32 \\ & 12 \end{aligned}$
- $350 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$1 / h$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	$\begin{aligned} & 27 \\ & 9 \end{aligned}$	$\begin{aligned} & 17 \\ & 4 \end{aligned}$
Normal starting (CLASS 10E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	630/561/510	720/641/580	840/748/670	1 100/979/890	1225/1 130/1 030
- $300 \% I_{\mathrm{M}}$   - Start-up time 10 s   - Start-up time 20 s	$1 / \mathrm{h}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 19 \\ & 7 \end{aligned}$	$\begin{aligned} & 18 \\ & 7 \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \end{aligned}$
- $350 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 2 \end{aligned}$	$\begin{array}{r} 9 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
Heavy starting (CLASS 20E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	500/450/400	520/470/420	570/520/470	920/840/760	980/900/810
- $300 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$				
- $350 \% I_{\text {M }}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$				
Heavy starting (CLASS 30E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	380/340/300	400/360/320	420/380/340	740/670/600	790/720/650
- $300 \% I_{M}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$				
Adjustable rated motor current $I_{M}$   - Minimum/maximum   - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 114 / 630 \\ & 197.5 / 987 \end{aligned}$	$\begin{aligned} & 144 / 720 \\ & 249.4 / 1247 \end{aligned}$	$\begin{aligned} & 168 / 840 \\ & 291 / 1454 \end{aligned}$	$\begin{aligned} & 220 / 1100 \\ & 381.1 / 1905 \end{aligned}$	$\begin{aligned} & 258 / 1280 \\ & 446.9 / 2217 \end{aligned}$

## Motor feeders according to IEC with 3RV2 motor starter protectors or 3VA circuit breakers (without semiconductor protection)

Type of coordination "1", CLASS 10,
short-circuit breaking capacity $I_{\mathrm{q}}$ in kA , see table
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.

Soft starters   Q11   Type	Motor starter protecto for 400 V systems Q1 Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$	for 500 V systems   Q1   Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$	Motor starter protector for 400 V systems Q1 Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$	for 500 V systems   Q1   Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$
Type of coordination "1"	Inline circuit				Inside-delta circuit			
3RW5513 3RW5514 3RW5515 3RW5516 3RW5517	3RV2032-4TA10 3RV2032-4DA10 3RV2032-4EA10 3RV2032-4VA10 3RV2032-4WA10	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$	3RV2032-4TA10 3RV2032-4DA10 3RV2032-4EA10 3RV2032-4VA10 3RV2032-4WA10	$\begin{aligned} & 18 \\ & 15 \\ & 15 \\ & 10 \\ & 10 \end{aligned}$	3RV2032-4DA10 3RV2032-4EA10 3RV2032-4VA10 3RV2032-4JA10 3RV2032-4RA10	65 65 65 65 65	3RV2032-4DA10 3RV2032-4EA10 3RV2032-4VA10 3RV2032-4JA10 3RV2032-4RA10	18 15 15 10 10
3RW5521 3RW5524 3RW5525 3RW5526 3RW5527	3RV2032-4JA10   3VA2163-7MN32-0AAO   3VA2110-7MN32-OAAO   3VA2216-7MN32-0AAO	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 15 \end{aligned}$	3RV2032-4JA10   3VA2163-7MN32-OAAO   3VA2110-7MN32-OAAO   3VA2216-7MN32-0AA0	$\begin{aligned} & -- \\ & 10 \\ & 20 \\ & 20 \\ & 10 \end{aligned}$	3RV2032-4RA10   3VA2110-7MN32-0AAO   3VA2216-7MN32-0AAO   3VA2220-7MN32-OAAO	-- 65 65 65 15	3RV2032-4RA10   3VA2110-7MN32-0AAO   3VA2216-7MN32-OAAO   3VA2220-7MN32-0AA0	-7 10 20 20 10
3RW5534 3RW5535 3RW5536	3VA2216-7MN32-0AAO 3VA2220-7MN32-OAAO 3VA2325-7MN32-0AA0	$\begin{aligned} & 65 \\ & 65 \\ & 30 \end{aligned}$	3VA2325-7MN32-OAAO	$10$	3VA2220-7MN32-0AA0 3VA2325-7MN32-0AA0 3VA2440-7MN32-0AA0	65 65 30	3VA2440-7MN32-OAAO	$\overline{-10}$
3RW5543 3RW5544 3RW5545 3RW5546 3RW5547 3RW5548	3VA2325-7MN32-OAAO 3VA2440-7MN32-0AAO 3VA2440-7MN32-0AAO 3VA2440-7MN32-OAAO 3VA2450-7MN32-0AA0 3VA2580-6HN32-0AAO	$\begin{aligned} & \hline 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$	3VA2325-7MN32-OAAO 3VA2440-7MN32-0AA0 3VA2440-7MN32-0AA0 3VA2440-7MN32-0AAO 3VA2450-7MN32-0AAO 3VA2580-6HN32-0AAO	$\begin{aligned} & \hline 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$	3VA2440-7MN32-0AA0 3VA2450-7MN32-0AA0 3VA2580-6HN32-0AA0 3VA2580-6HN32-0AAO 3VA2510-6HN32-0AAO 3VA2510-6HN32-0AAO	65 65 65 65 65 65	3VA2440-7MN32-0AAO 3VA2450-7MN32-0AA0 3VA2580-6HN32-0AAO 3VA2580-6HN32-0AAO 3VA2510-6HN32-0AAO 3VA2510-6HN32-0AAO	65 65 65 65 65 65
3RW5552 3RW5553 3RW5554 3RW5556 3RW5558	3VA2580-6HN32-0AAO 3VA2510-6HN32-0AA0 3VA2510-6HN32-0AAO 3VA2716-7AB05-0AAO 3VA2716-7AB05-0AAO	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$	3VA2580-6HN32-OAAO 3VA2510-6HN32-OAAO 3VA2510-6HN32-OAAO 3VA2716-7AB05-0AAO 3VA2716-7AB05-0AAO	65 65 65 65 65	3VA2716-7AB05-0AAO   3VA2716-7AB05-0AA0   3VA2716-7AB05-0AAO   --	65 65 65	3VA2716-7AB05-0AA0   3VA2716-7AB05-0AA0   3VA2716-7AB05-0AAO   --	65 65 65 --

Note:
The service factor and measurement inaccuracies, for example, have been taken into account for the selection of the specified motor starter protectors/circuit breakers; the specified shortcircuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller motor starter protectors/circuit breakers from the same series can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must match the connected three-phase motor, the short-circuit and overload requirements of the application, and the line protection for the cables used.

When using braking functions, the use of fuses is recommended to avoid the risk of false tripping of 3VA circuit breakers with electronic motor protection function during braking.

In motor feeder tests with soft starters conducted in 690 V systems, demonstrable short-circuit breaking capacities could only be achieved using fuses ( $I_{\mathrm{q}}>5$ to 10 kA ).

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> High Performance soft starters

## 3RW55 soft starters > General data

## Motor feeders according to IEC with 3NA3 fuses

gG class full-range fuses for cable and line protection according
to IEC 60269-2, without semiconductor protection
Type of coordination "1",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.

Soft starters	gG class fuse	Line contac	(optional)	gG class fuse	Line contact	ptional)		
	for systems up to 690 V	for systems up to 480 V	for systems up to 690 V	for systems up to 600 V	for systems up to 480 V in the supply cable	for systems up to 600 V in the supply cable	for systems up to 480 V in the delta	for systems up to 600 V in the delta
Q11	F1	Q21	Q21	F1	Q21	Q21	Q21	Q21
Type								
Type of   coordination   "1" ToC   1	Inline circuit			Inside-delta circuit				
3RW5513	3NA3820-6	3RT2025	3RT2025	3NA3820-6	3 T2027	3RT2035	3RT2025	3RT2025
3RW5514	3NA3820-6	3RT2026	3RT2027	3NA3820-6	3RT2027	3RT2037	3RT2026	3RT2027
3RW5515	3NA3822-6	3RT2027	3RT2037	3NA3822-6	3RT2036	3RT2037	3RT2027	3RT2037
3RW5516	3NA3824-6	3RT2035	3RT2037	3NA3824-6	3RT2037	3RT2038	3RT2035	3RT2037
3RW5517	3NA3824-6	3RT2035	3RT2037	3NA3824-6	3RT2038	3RT2046	3RT2035	3RT2037
3RW5521	3NA3824-6	3RT2027	3RT2037	3NA3824-6	3RT2036	3RT2037	3RT2027	3RT2037
3RW5524	3NA3824-6	3RT2036	3RT2037	3NA3824-6	3RT2046	3RT2047	3RT2036	3RT2037
3RW5525	3NA3830-6	3 T2037	3RT2046	3NA3830-6	3 T2047	3RT1054	3RT2037	3RT2046
3RW5526	3NA3132-6	3RT2038	3RT2046	3NA3132-6	3RT1055	3RT1055	3RT2038	3RT2046
3RW5527	3NA3136-6	3RT2046	3RT2047	3NA3136-6	3RT1056	3RT1056	3RT2046	3RT2047
3RW5534	3NA3244-6	3RT1054	3RT1054	3NA3244-6	3RT1064	3RT1064	3RT1054	3RT1054
3RW5535	3NA3244-6	3RT1055	3RT1055	3NA3244-6	3RT1065	3RT1065	3RT1055	3RT1055
3RW5536	3NA3365-6	3RT1056	3RT1064	3NA3365-6	3RT1066	3RT1075	3RT1056	3RT1064
3RW5543	$2 \times 3$ NA3354-6	3RT1064	3RT1064	$2 \times 3 N A 3354-6$	3RT1075	3RT1075	3RT1064	3RT1064
3RW5544	$2 \times 3$ NA3354-6	3RT1065	3RT1065	$2 \times 3$ A $3354-6$	3RT1076	3RT1076	3RT1065	3RT1065
3RW5545	$2 \times 3 N A 3365-6$	3RT1075	3RT1075	$2 \times 3 N A 3365-6$	3TF68	3TF68	3RT1075	3RT1075
3RW5546	$2 \times 3 N A 3365-6$	3RT1075	3RT1075	$2 \times 3 N A 3365-6$	3TF69	3TF69	3RT1075	3RT1075
3RW5547	$2 \times 3 N A 3365-6$	3RT1076	3RT1276	$2 \times 3 N A 3365-6$	3TF69	3TF69	3RT1076	3 RT1276
3RW5548	$2 \times 3 N A 3365-6$	3TF68	3TF68	$2 \times 3 N A 3365-6$	--	--	3TF68	3TF68
3RW5552	$2 \times 3 N A 3365-6$	3TF68	3TF69	--	--	--	3TF68	3TF69
3RW5553	$2 \times 3 N A 3365-6$	3TF69	3TF69	--	--	--	3TF69	3TF69
3RW5554	$2 \times 3 N A 3365-6$	--	--	--	--	--	--	--
3RW5556	$3 \times 3 N A 3365-6$	--	--	--	--	--	--	--
3RW5558	$3 \times 3 N A 3365-6$	--	--	--	--	--	--	--

Note:
The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

In inside-delta circuits, motor feeders with soft starters can only be operated in systems with up to 600 V .

## Motor feeders according to IEC with 3NE1/3NB3 SITOR fuses

gR class full-range fuses for semiconductor protection,
cable and line protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.


Soft starters		Line contac	
	for systems up to 690 V	for systems up to 480 V	for systems up to 690 V
Q11	F'1	Q21	Q21
Type	Type	Type	Type
Type of coordination "2"	Inline circuit		
3RW5513 3RW5514 3RW5515 3RW5516 3RW5517	3NE1815-0   3NE1802-0   3NE1817-0   3NE1818-0   3NE1820-0	3RT2025 3RT2026 3RT2027 3RT2035 3RT2035	$\begin{aligned} & \text { 3RT2025 } \\ & \text { 3RT2027 } \\ & \text { 3RT2037 } \\ & \text { 3RT2037 } \\ & \text { 3RT2037 } \end{aligned}$
3RW5521 3RW5524 3RW5525 3RW5526 3RW5527	3NE1817-0   3NE1021-2   3NE1022-0   3NE1224-0   3NE1224-0	$\begin{aligned} & \hline \text { 3RT2027 } \\ & \text { 3RT2036 } \\ & \text { 3RT2037 } \\ & \text { 3RT2038 } \\ & \text { 3RT2046 } \end{aligned}$	$\begin{aligned} & \text { 3RT2037 } \\ & \text { 3RT2037 } \\ & \text { 3RT2046 } \\ & \text { 3RT2046 } \\ & \text { 3RT2047 } \end{aligned}$
3RW5534 3RW5535 3RW5536	3NE1225-0 3NE1227-0 3NE1230-0	3RT1054   3RT1055   3RT1056	3RT1054 3RT1055 3RT1064
3RW5543 3RW5544 3RW5545 3RW5546 3RW5547 3RW5548	3NE1230-2 ${ }^{1)}$   3NE1331-0   3NE1334-2   3NE1334-2   3NE1436-2   3NE1437-2	$\begin{aligned} & \text { 3RT1064 } \\ & \text { 3RT1065 } \\ & \text { 3RT1075 } \\ & \text { 3RT1075 } \\ & \text { 3RT1076 } \\ & \text { 3TF68 } \end{aligned}$	$\begin{aligned} & \text { 3RT1064 } \\ & \text { 3RT1065 } \\ & \text { 3RT1075 } \\ & \text { 3RT1075 } \\ & \text { 3RT1276 } \\ & \text { 3TF68 } \end{aligned}$
3RW5552 3RW5553 3RW5554 3RW5556 3RW5558	3NB3350-1KK26 3NB3351-1KK26 3NB3351-1KK26 3NB3354-1KK26 3NB3357-1KK26	$\begin{aligned} & \text { 3TF68 } \\ & \text { 3TF69 } \\ & -- \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & \hline \text { 3TF69 } \\ & \text { 3TF69 } \\ & \text {-- } \\ & -- \\ & -- \end{aligned}$

${ }^{1)}$ For systems up to 500 V .
Note:
The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in $k A$ are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.
In inside-delta circuits, a gR class full-range fuse could not provide the semiconductor protection of the delta-connected soft starter with a short-circuit breaking capacity that is adequate for practical use. In this case, we recommend using aR class partial-range fuses for semiconductor protection for type of coordination "2" (see page 6/26).

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> High Performance soft starters

## 3RW55 soft starters > General data

## Motor feeders according to IEC with 3NE8 / 3NE3 / 3NC3 fuses

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders
with soft starters, see page 6/11.


Soft starters	gG class fuse   for systems up to 690 V	aR class fuse   for systems up to 690 V	Line contactor (optional)	
			for   systems up to 480 V	for systems up to 690 V
Q11	F1	F3	Q21	Q21
Type	Type	Type	Type	Type

## Type of coordination $\quad$| Toc |
| :---: |
| 2 | "2"

3RW5513	
3RW5514	$3 N$
3RW5515	$3 N$
3RW5516	$3 N$
3RW5517	$3 N$
3RW5521	$3 N$
3RW5524	$3 N$
3RW5525	$3 N$
3RW5526	$3 N$
3RW5527	$3 N$
3RW5534	$3 N$
3RW5535	$3 N$
3RW5536	$3 N$
3RW5543	2
3RW5544	2
3RW5545	2
3RW5546	2
3RW5547	2
3RW5548	2
3RW5552	2
3RW5553	2
3RW5554	2
3RW5556	3
3RW5558	3


gG class fuse aR class fuse Line contactor (optional)
for systems for systems up to 600 V

for systems	for systems	for	for
up to 480 V	up to 600 V	systems	systems
in the	in the	up to	up to
supply	supply	480 V	600 V
cable	cable	in the delta	in the delta
Q21	Q21	Q21	Q21
Type	Type	Type	Type

Inside-delta circuit

3NA3820-6	3NE8017-1	3RT2027	3RT2035	3RT2025	3RT2025
3NA3820-6	3NE8020-1	3RT2027	3RT2037	3RT2026	3RT2027
3NA3822-6	3NE8021-1	3RT2036	3RT2037	3RT2027	3RT2037
3NA3824-6	3NE8022-1	3 RT2037	3RT2038	3RT2035	3RT2037
3NA3824-6	3NE8024-1	3RT2038	3RT2046	3RT2035	3RT2037
3NA3824-6	3NE8021-1	3RT2036	3 T2037	3 TT2027	3 3T2037
3NA3824-6	3NE8024-1	3RT2046	3RT2047	3RT2036	3RT2037
3NA3830-6	3 NE3227	3RT2047	3RT1054	3RT2037	3RT2046
3NA3132-6	3NE3227	3RT1055	3RT1055	3RT2038	3RT2046
3NA3136-6	$3 N E 3227$	3RT1056	3RT1056	3RT2046	3RT2047
3NA3244-6	3NE3231	3RT1064	3RT1064	3RT1054	3RT1054
3NA3244-6	3NE3233	3RT1065	3RT1065	3RT1055	3RT1055
3NA3365-6	3NE3334-0B	3RT1066	3RT1075	3RT1056	3RT1064
$2 \times 3$ NA3354-6	3NE3333	3RT1075	3RT1075	3RT1064	3RT1064
$2 \times 3$ NA3354-6	3NE3335	3RT1076	3RT1076	3RT1065	3RT1065
$2 \times 3$ NA3365-6	--	3TF68	3TF68	3RT1075	3RT1075
$2 \times 3$ NA3365-6	--	3TF69	3TF69	3RT1075	3RT1075
$2 \times 3$ NA3365-6	3NE3340-8	3TF69	3TF69	3RT1076	3RT1276
$2 \times 3$ NA3365-6	3NC3342-1U	--	--	3TF68	3TF68
--	3NC3343-1U	--	--	3TF68	3TF69
--	3NC3343-1U	--	--	3TF69	3TF69
--	3NC3343-1U	--	--	--	--
--	$3 \times 3$ NE3340-8	--	--	--	--
--	$3 \times 3$ NE3340-8	--	--	--	--

$3 \times 3$ NE3340-8
Note:
The specified short-circuit breaking capacities $I_{\mathrm{Q}}$ in KA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

For CLASS 10 applications, as an alternative to the gG class full-range fuses for cable and line protection 3NA3 (F1), 3RV2 motor starter protectors or 3VA circuit breakers can also be used, possibly with reduced short-circuit breaking capacity (see page 6/23). In these cases, optional line contactors can be dispensed with.
In inside-delta circuits, motor feeders with soft starters can only be operated in systems with up to 600 V .

## Reversing operation with reversing contactors

Note:
For general recommendations for constructing motor feeders
with soft starters, see page 6/11.
(For an example circuit, see
3RW55 Equipment Manual, Appendix A.3)

Soft starters	Reversing contactor assembly		For reversing contactor	
	for systems up to 480 V	for systems up to 690 V	for systems up to 480 V	for systems up to 690 V
Q11	Q21 / Q22	Q21 / Q22	Q21 / Q22	Q21 / Q22
Type	Type	Type	Type	Type
3RW5513	3RA2325	3RA2325	3RT2025	3RT2025
3RW5514	3RA2326	3RA2327	3RT2026	3 TT2027
3RW5515	3RA2327	3RA2337	3RT2027	3RT2037
3RW5516	3RA2335	3RA2337	3RT2035	3 TT2037
3RW5517	3RA2335	3RA2337	3RT2035	3 RT2037
3RW5521	3RA2327	$3 R A 2337$	3 RT2027	3 TT2037
3RW5524	3RA2336	3RA2337	3RT2036	3RT2037
3RW5525	3RA2337	3RA2346	3RT2037	3RT2046
3RW5526	3RA2338	3RA2346	3RT2038	3RT2046
3RW5527	3RA2346	3RA2347	3RT2046	3RT2047
3RW5534	--	--	3RT1054	3RT1054
3RW5535	--	--	3RT1055	3RT1055
3RW5536	--	--	3RT1056	3RT1064
3RW5543	--	--	3RT1064	3RT1064
3RW5544	--	--	3RT1065	3RT1065
3RW5545	--	--	3RT1075	3RT1075
3RW5546	--	--	3RT1075	3RT1075
3RW5547	--	--	3RT1076	3RT1276
3RW5548	--	--	3TF68	3TF68
3RW5552	--	--	3TF68	3TF69
3RW5553	--	--	3TF69	3TF69
3RW5554	--	--	--	--
3RW5556	--	--	--	--
3RW5558	--	--	--	--

## DC braking with braking contactors

Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.
(For an example circuit, see
3RW55 Equipment Manual, Appendix A.3)

Soft starters	DC braking contactor for systems up to 400 V	DC braking contact for systems up to 48	sembly	for systems up to 690 V	
	with 2 NC contacts + 2 NO contacts parallel	with 3 NO contacts parallel			
Q11	Q93	Q91	Q92	Q91	Q92
Type	Type	Type	Type	Type	Type
3RW5513	3RT2517	3RT2015	3RT2016	3RT2015	3RT2016
3RW5514	3RT2518	3RT2015	3RT2017	3RT2015	3RT2023
3RW5515	3RT2526	3RT2015	3RT2025	3RT2015	3RT2025
3RW5516	3RT2526	3RT2015	3RT2025	3RT2015	3 T2027
3RW5517	3RT2535	3RT2015	3 T2027	3RT2015	3 TT2027
3RW5521	3RT2526	3RT2015	3RT2025	3RT2015	3RT2025
3RW5524	3RT2535	3RT2016	3 3T2027	3RT2016	3RT2035
3RW5525	--	3RT2024	3RT2027	3RT2024	3RT2037
3RW5526	--	3RT2025	3RT2035	3RT2025	3RT2037
3RW5527	--	3RT2027	3RT2036	3RT2027	3 TT2037
3RW5534	--	3RT2035	3RT2037	3RT2035	3RT2038
3RW5535	--	3RT2036	3RT2038	3RT2036	3 RT2046
3RW5536	--	3 T2037	3RT2046	3RT2037	3RT2047
3RW5543	--	3RT2045	3RT2047	3RT2045	3RT1054
3RW5544	--	3RT2045	3RT1055	3RT2045	3RT1055
3RW5545	--	3RT2446	3RT1056	3RT2446	3RT1056
3RW5546	--	3RT1055	3RT1056	3RT1055	3RT1064
3RW5547	--	3RT1456	3RT1065	3RT1456	3RT1065
3RW5548	--	3RT1456	3RT1066	3RT1456	3RT1075
3RW5552	--	3RT1065	3RT1075	3RT1065	3RT1075
3RW5553	--	3RT1065	3RT1075	3RT1065	3RT1075
3RW5554	--	3RT1466	3RT1076	3RT1466	3RT1076
3RW5556	--	3RT1476	3TF68	3RT1476	3TF68
3RW5558	--	3RT1476	3TF69	3RT1476	3TF69

# Switching devices－Soft starters and solid－state switching devices 

SIRIUS 3RW soft starters
High Performance soft starters

## 3RW55 soft starters＞Inline circuit IE3／IE4 ready

## Selection and ordering data

For normal starting（CLASS 10E）


3RW551．


3RW552．

At $40{ }^{\circ} \mathrm{C}$					At $50{ }^{\circ} \mathrm{C}$					SD ${ }^{1)}$	Article No．	$\begin{array}{r} \text { Price } \\ \text { per PU } \end{array}$		PS＊	PG
Opera－ tional	Operating power for three－phase motors				Opera－ tional	Rating［hp］	for three－p	phase motor							
current	At $230 \mathrm{~V}$	At 400 V	At 500 V	At 690 V	current	$\begin{aligned} & \text { At } \\ & \text { 200/208 V } \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	At 575／600 V						
A	kW	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage 200 ．．． 480 V															
13	3	5.5	－－	－－	11.5	2	3	7.5	－－	5	3RW5513－DHAD4		1	1 unit	42 S
18	4	7.5	－－	－－	15.9	3	5	10	－－	5	3RW5514－ロHAD4		1	1 unit	42 S
25	5.5	11	－－	－－	22.3	5	7.5	15	－－	5	3RW5515－ロHAD4		1	1 unit	42 S
32	7.5	15	－－	－－	28.4	7.5	10	20	－－	5	3RW5516－ロHAD4		1	1 unit	425
38	11	18.5	－－	－－	33.5	10	10	20	－－	5	3RW5517－ロHAD4		1	1 unit	42 S
47	11	22	－－	－－	41.6	10	10	30	－－	5	3RW5524－ロHAD4		1	1 unit	42 S
63	18.5	30	－－	－－	55.5	15	20	40	－－	5	3RW5525－DHAD4		1	1 unit	42 S
77	22	37	－－	－－	68	20	25	50	－－	5	3RW5526－■HAD4		1	1 unit	42 S
93	22	45	－－	－－	82.5	25	30	60	－－	5	3RW5527－ロHAD4		1	1 unit	42 S

Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

## Control supply voltage

24 V AC／DC
110 ．．． 250 V AC
1） 3 RW55 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．
Note：
For the constraints for the motor outputs specified here， see page 6／8．

For normal starting（CLASS 10E）


3RW553．


3RW554．


3RW555

At $40{ }^{\circ} \mathrm{C}$					At $50{ }^{\circ} \mathrm{C}$					SD ${ }^{1)}$	Article No．	Price per PU		PS＊	PG
Opera－ tional	Operating power for three－phase motors				Opera－ tional	Rating［hp］	］for three－p	phase motor							
current	$\begin{aligned} & \text { At } \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 400 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 500 \mathrm{~V} \end{aligned}$	At 690 V	current	$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 575 / 600 \mathrm{~V} \end{aligned}$						
A	kW	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage 200 ．．． 480 V															
113	30	55	－－	－－	101	30	30	75	－－ 5	5	3RW5534－ロHAD4		1	1 unit	42S
143	37	75	－－	－－	128	40	40	100	－－5	5	3RW5535－ロHAD4		1	1 unit	42 S
171	45	90	－－	－－	153	50	50	100	－－ 5	5	3RW5536－■HAD4		1	1 unit	42 S
210	55	110	－－	－－	186	60	60	150	－－	5	3RW5543－ロHAD4		1	1 unit	42 S
250	75	132	－－	－－	220	60	75	150	－－ 5	5	3RW5544－ロHAD4		1	1 unit	42 S
315	90	160	－－	－－	279	75	100	200	－－ 5	5	3RW5545－■HAD4		1	1 unit	42 S
370	110	200	－－	－－	328	100	125	250	－－ 5	5	3RW5546－ロHAD4		1	1 unit	42 S
470	132	250	－－	－－	416	150	150	350	－－ 5	5	3RW5547－ロHAD4		1	1 unit	42S
570	160	315	－－	－－	504	150	200	400	－－ 5	5	3RW5548－■HAD4		1	1 unit	42S
630	200	355	－－	－－	561	200	200	450	－－	15	3RW5552－ロHAD4		1	1 unit	42S
720	200	400	－－	－－	641	200	250	500	－－	15	3RW5553－ロHAD4		1	1 unit	42 S
840	250	450	－－	－－	748	250	300	600	－－	15	3RW5554－ロHAD4		1	1 unit	42 S
1100	315	560	－－	－－	979	350	400	850	－－	15	3RW5556－■HAD4		1	1 unit	42 S
1280	400	710	－－	－－	1139	400	450	1000	－－	15	3RW5558－■HAD4		1	1 unit	42S

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

## Control supply voltage

24 V AC／DC
110 ．．． 250 V AC
1） 3 RW55 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

## Note：

For the constraints for the motor outputs specified here，
see page 6／8．

# Switching devices－Soft starters and solid－state switching devices 

SIRIUS 3RW soft starters
High Performance soft starters
3RW55 soft starters＞Inline circuit IE3／IE4 ready

## For normal starting（CLASS 10E）



3RW551．


3RW552．

At $40{ }^{\circ} \mathrm{C}$					At $50{ }^{\circ} \mathrm{C}$					SD ${ }^{1)}$	Article No．	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS＊	PG
Opera－ tional current	Operating power for three－phase motors				Opera－ tional current	Rating［hp］for three－phase motors									
	At 230 V	At 400 V	At 500 V	At 690 V		$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 575 / 600 \mathrm{~V} \end{aligned}$						
A	kW	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage 200 ．．． 600 V															
13	3	5.5	7.5	－－	11.5	2	3	7.5	10	5	3RW5513－■HAD5		1	1 unit	42 S
18	4	7.5	11	－－	15.9	3	5	10	10	5	3RW5514－ロHAD5		1	1 unit	42 S
25	5.5	11	15	－－	22.3	5	7.5	15	20	5	3RW5515－■HAD5		1	1 unit	42 S
32	7.5	15	18.5	－－	28.4	7.5	10	20	25	5	3RW5516－■HAD5		1	1 unit	42 S
38	11	18.5	22	－－	33.5	10	10	20	30	5	3RW5517－■HAD5		1	1 unit	42 S


	on	volt	ge 2	－										
25	5.5	11	15	22	22.3	5	7.5	15	20	5	3RW5521－ロHAD6	1	1 unit	42 S
47	11	22	30	45	41.6	10	10	30	40	5	3RW5524－पHAD6	1	1 unit	42 S
63	18.5	30	37	55	55.5	15	20	40	50	5	3RW5525－ロHAD6	1	1 unit	42 S
77	22	37	45	75	68	20	25	50	60	5	3RW5526－■HAD6	1	1 unit	42 S
93	22	45	55	90	82.5	25	30	60	75	5	3RW5527－ロHAD6	1	1 unit	42S

Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

Control supply voltage
24 V AC／DC
110 ．．． 250 V AC
1）3RW55 soft starter with screw terminals for operational voltage up to 690 V Standard delivery time SD＝ 2 days（ d ）．
Note：
For the constraints for the motor outputs specified here， see page 6／8．

For normal starting（CLASS 10E）


3RW553．


3RW554．


3RW555．

At $40{ }^{\circ} \mathrm{C}$					At $50{ }^{\circ} \mathrm{C}$					SD ${ }^{1)}$	Article No．	Price per PU	PU （UNIT， SET，M）	PS＊	PG
Opera－ tional current	Operating power for three－phase motors				Opera－ tional	Rating［hp］	］for three－ph	phase motor							
	$\begin{aligned} & \text { At } \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 400 \mathrm{~V} \end{aligned}$	At 500 V	At $690 \text { V }$	current	$\begin{aligned} & \text { At } \\ & \text { 200/208 V } \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	At $575 / 600 \mathrm{~V}$						
A	kW	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage $200 \ldots 690$ V															
113	30	55	75	110	101	30	30	75	100	5	3RW5534－ロHAD6		1	1 unit	42 S
143	37	75	90	132	128	40	40	100	125	5	3RW5535－ロHAD6		1	1 unit	42S
171	45	90	110	160	153	50	50	100	150	5	3RW5536－पHAD6		1	1 unit	42S
210	55	110	132	200	186	60	60	150	150	5	3RW5543－पHAD6		1	1 unit	42 S
250	75	132	160	250	220	60	75	150	200	5	3RW5544－पНA口6		1	1 unit	42 S
315	90	160	200	315	279	75	100	200	250	5	3RW5545－■HAD6		1	1 unit	42 S
370	110	200	250	355	328	100	125	250	300	5	3RW5546－पHAD6		1	1 unit	42 S
470	132	250	315	400	416	150	150	350	450	5	3RW5547－■HAD6		1	1 unit	42 S
570	160	315	355	560	504	150	200	400	500	5	3RW5548－■HAD6		1	1 unit	42 S
630	200	355	400	630	561	200	200	450	600	15	3RW5552－पHAD6		1	1 unit	42 S
720	200	400	500	710	641	200	250	500	700	15	3RW5553－पHAD6		1	1 unit	42 S
840	250	450	560	800	748	250	300	600	800	15	3RW5554－ロHAD6		1	1 unit	42 S
1100	315	560	710	1000	979	350	400	850	1100	15	3RW5556－■HAD6		1	1 unit	42 S
1280	400	710	900	1200	1139	400	450	1000	1250	15	3RW5558－■HAD6		1	1 unit	42S

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

## Control supply voltage

24 V AC／DC
110 ．．． 250 V AC
${ }^{1)} 3 R W 55$ soft starter with screw terminals for operational voltage up to 690 V ：
－Sizes 3 and 4：Standard delivery time SD＝ 2 days（d）．
－Size 5：Standard delivery time SD＝ 5 days（d）．
Note：
For the constraints for the motor outputs specified here，
see page 6／8．

# Switching devices - Soft starters and solid-state switching devices 

SIRIUS 3RW soft starters
High Performance soft starters

## 3RW55 soft starters > Inside-delta circuit IE3/IE4 ready

## Selection and ordering data

For normal starting (CLASS 10E)


3RW551


3RW552.

At $40{ }^{\circ} \mathrm{C}$ for inside-delta circuit				At $50{ }^{\circ} \mathrm{C}$ for inside-delta circuit					SD ${ }^{1)}$	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ (\text { UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
Operational	Operating power for three-phase motors			Operational	Rating [hp]	] for three-ph	ase motor							
current	At $230 \mathrm{~V}$	At 400 V	At 500 V	current	At 200/208 V	$\begin{aligned} & \text { At } \\ & \text { 220/230 V } \end{aligned}$	At $460 / 480 \mathrm{~V}$	At $575 / 600 \mathrm{~V}$						
A	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage 200 ... 480 V														
22.5	5.5	11	--	19.9	5	5	10	--	5	3RW5513-■HAD4		1	1 unit	42 S
31.5	7.5	15	--	28	7.5	7.5	20	--	5	3RW5514-ロHAD4		1	1 unit	42 S
43.3	11	18.5	--	39	10	10	25	--	5	3RW5515-■HAD4		1	1 unit	42 S
55.4	15	22	--	49	15	15	30	--	5	3RW5516-■HAD4		1	1 unit	42 S
65.8	18.5	30	--	58	15	20	40	--	5	3RW5517-■HAD4		1	1 unit	42 S
81.4	22	45	--	72	20	25	50	--	5	3RW5524-DHAD4		1	1 unit	42 S
109	30	55	--	96	30	30	75	--	5	3RW5525-ロHAD4		1	1 unit	42 S
133	37	75	--	118	30	40	75	--	5	3RW5526-■HAD4		1	1 unit	42 S
161	45	90	--	143	40	50	100	--	5	3RW5527-■HAD4		1	1 unit	42 S

Type of electrical connection for the control circuit
Screw terminals
Spring-loaded terminals

## Control supply voltage

24 V AC/DC
110 ... 250 V AC

1) 3RW55 soft starter with screw terminals for operational voltage up to 480 V Standard delivery time SD = 1 day (d).

## Note:

For the constraints for the motor outputs specified here,
see page 6/8.

For normal starting（CLASS 10E）


3RW553．


3RW554．


3RW555

At $40{ }^{\circ} \mathrm{C}$ for inside－delta circuit				At $50{ }^{\circ} \mathrm{C}$ for inside－delta circuit					SD ${ }^{1)}$	Article No．	Price per PU		PS＊	PG
Opera－ tional current	Operating power for three－phase motors			Opera－ tional current	Rating［hp］for three－phase motors									
	$\begin{aligned} & \text { At } \\ & 230 \mathrm{~V} \end{aligned}$	At $400 \mathrm{~V}$	At $500 \mathrm{~V}$		$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	At $220 / 230 \mathrm{~V}$	At $460 / 480 \mathrm{~V}$	At $575 / 600 \mathrm{~V}$						
A	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage 200 ．．． 480 V														
196	55	110	－－	175	50	60	125	－－	5	3RW5534－पHAD4		1	1 unit	42 S
248	75	132	－－	222	75	75	150	－－	5	3RW5535－ロHAD4		1	1 unit	42 S
296	90	160	－－	265	75	100	200	－－	5	3RW5536－पHAD4		1	1 unit	42 S
364	110	200	－－	322	100	125	250	－－	5	3RW5543－पHAD4		1	1 unit	42 S
433	132	250	－－	381	125	150	300	－－	5	3RW5544－पHAD4		1	1 unit	42 S
546	160	315	－－	483	150	200	400	－－	5	3RW5545－ロHAD4		1	1 unit	42 S
641	200	355	－－	568	200	200	450	－－	5	3RW5546－पHAD4		1	1 unit	42 S
814	250	400	－－	721	250	250	600	－－	5	3RW5547－ロHAD4		1	1 unit	42 S
987	315	560	－－	873	300	350	750	－－	5	3RW5548－■HAD4		1	1 unit	42 S
1091	355	630	－－	972	350	400	850	－－	15	3RW5552－口HAD4		1	1 unit	42 S
1247	400	710	－－	1110	400	450	950	－－	15	3RW5553－DHAD4		1	1 unit	42 S
1454	450	800	－－	1295	450	550	1150	－－	15	3RW5554－■HAD4		1	1 unit	42 S
1905	560	1000	－－	1695	600	700	1500	－－	15	3RW5556－■HA $\square 4$		1	1 unit	42 S
2217	710	1200	－－	1973	700	850	1700	－－	15	3RW5558－■HAD4		1	1 unit	425

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

Control supply voltage
24 V AC／DC
110 ．．． 250 V AC
1） 3 RW55 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

## Note：

For the constraints for the motor outputs specified here，
see page 6／8．

# Switching devices－Soft starters and solid－state switching devices 

SIRIUS 3RW soft starters
High Performance soft starters

## 3RW55 soft starters＞Inside－delta circuit IE3／IE4 ready

## For normal starting（CLASS 10E）



3RW551．


3RW552．

At $40{ }^{\circ} \mathrm{C}$ for inside－delta circuit				At $50^{\circ} \mathrm{C}$ for inside－delta circuit					$S D^{1)}$	Article No．	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS＊	PG
Opera－ tional	Operating power for three－phase motors			Opera－ tional	Rating［hp］	for three－p	hase motors							
current	At 230 V	At 400 V	At 500 V	current	$\begin{aligned} & \text { At } \\ & \text { 200/208 V } \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	At $460 / 480 \mathrm{~V}$	At $575 / 600 \mathrm{~V}$						
A	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage $200 . .600 \mathrm{~V}$														
22.5	5.5	11	15	19.9	5	5	10	15	5	3RW5513－पHAD5		1	1 unit	42 S
31.5	7.5	15	18.5	28	7.5	7.5	20	25	5	3RW5514－■HAD5		1	1 unit	42 S
43.3	11	18.5	22	39	10	10	25	30	5	3RW5515－■HAD5		1	1 unit	42 S
55.4	15	22	30	49	15	15	30	40	5	3RW5516－■HAD5		1	1 unit	42 S
65.8	18.5	30	37	58	15	20	40	50	5	3RW5517－■HAD5		1	1 unit	42 S
43.3	11	18.5	22	39	10	10	25	30	5	3RW5521－ロHAD6		1	1 unit	42 S
81.4	22	45	45	72	20	25	50	60	5	3RW5524－ロHAD6		1	1 unit	42 S
109	30	55	55	96	30	30	75	75	5	3RW5525－ロHAD6		1	1 unit	42 S
133	37	75	90	118	30	40	75	100	5	3RW5526－ロНA口6		1	1 unit	42 S
161	45	90	110	143	40	50	100	125	5	3RW5527－■HA $\square 6$		1	1 unit	42 S

Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

Control supply voltage
24 V AC／DC
0
110 ．．． 250 V AC
1）3RW55 soft starter with screw terminals for operational voltage up to 600 V ： Standard delivery time SD $=2$ days（d）．

## Note：

For the constraints for the motor outputs specified here
see page 6／8．

For normal starting (CLASS 10E)


3RW553.


3RW554.


3RW555

At $40{ }^{\circ} \mathrm{C}$ for inside-delta circuit				At $50{ }^{\circ} \mathrm{C}$ for inside-delta circuit					$S D^{1)}$	Article No.	Price per PU		PS*	PG
Operational current	Operating power for three-phase motors			Operational current	Rating [hp] for three-phase motors									
	At 230 V	At 400 V	At 500 V		$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	At $220 / 230 \mathrm{~V}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	At $575 / 600 \mathrm{~V}$						
A	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage $200 \ldots 600 \mathrm{~V}$														
196	55 75	110 132	132 160	175 222	50 75	60 75	125 150	150 200	5 5	3RW5534-■HAD6 3RW5535-■HAD6		1	1 unit 1 unit	$42 S$ $42 S$
296	90	160	200	265	75	100	200	250	5	3RW5536-■HAD6		1	1 unit	42S
364	110	200	250	322	100	125	250	300	5	3RW5543-पHAD6		1	1 unit	42S
433	132	250	315	381	125	150	300	350	5	3RW5544-पHAD6		1	1 unit	42 S
546	160	315	355	483	150	200	400	500	5	3RW5545-■HAD6		1	1 unit	42 S
641	200	355	450	568	200	200	450	600	5	3RW5546-■HAD6		1	1 unit	42 S
814	250	400	500	721	250	250	600	800	5	3RW5547-■HAD6		1	1 unit	42 S
987	315	560	630	873	300	350	750	950	5	3RW5548-■HAD6		1	1 unit	42 S
1091	355	630	710	972	350	400	850	1050	15	3RW5552-■HAD6		1	1 unit	42 S
1247	400	710	800	1110	400	450	950	1250	15	3RW5553-■HAD6		1	1 unit	42 S
1454	450	800	900	1295	450	550	1150	1450	15	3RW5554-■HAD6		1	1 unit	42 S
1905	560	1000	1200	1695	600	700	1500	1900	15	3RW5556-■HAD6		1	1 unit	42S
2217	710	1200	1500	1973	700	850	1700	2200	15	3RW5558-■HAD6		1	1 unit	42 S

Type of electrical connection for the control circuit
Spring-loaded terminals
Screw terminals

## Control supply voltage

24 V AC/DC
110... 250 V AC

1) 3 RW55 soft starter with screw terminals for operational voltage up to 600 V :

- Sizes 3 and 4: Standard delivery time SD = 2 days (d).
- Size 5: Standard delivery time SD = 5 days (d).

Note:
For the constraints for the motor outputs specified here,
see page 6/8.

# Switching devices - Soft starters and solid-state switching devices 

SIRIUS 3RW soft starters
High Performance soft starters
3RW55 soft starters > Accessories
Selection and ordering data

Product designation	Manufacturer's Article No. of the soft starter	Type of product	Application	SD	Article No.	Price per PU		PS*	PG


d

| Fan covers |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Terminal covers



3RW5983-0TC20


3RW5984-0TC20
Enclosure components


3RW5950-0GL20
Communication modules


3RW5980-0CS00


3RW5980-0CE00


3RW5980-0CR00

PROFINET High Feature with integral switch	--	-	3RW5950-0CH00	1	1 unit	42S
PROFINET   Standard	--	-	3RW5980-0CS00	1	1 unit	42S
PROFIBUS	--	-	3RW5980-0CP00	1	1 unit	42S
EtherNet/IP	--	-	3RW5980-0CE00	1	1 unit	42S
Modbus RTU		-	3RW5980-0CR00	1	1 unit	42S
Modbus TCP	--	-	3RW5980-0CT00	1	1 unit	42S

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters High Performance soft starters

3RW55 soft starters > Accessories

	Product designation	Manufacturer's Article No. of the soft starter	Type of product	Application	SD	Article No.	Price per PU		PS*	PG
	d									
HMI modules										
	IP65 door mounting kit for HMI modules	3RW55	IP65	For HMI modules	-	3RW5980-0HD00		1	1 unit	42S
3RW5980-0HD00										
Connecting cables										
		3RW55	5 m , round		-	3RW5980-0HC60		1	1 unit	42 S
	connecting		2.5 m , round	door mountin		3UF7933-0BA00-0		1	1 unit	42 J
			1.0 m , round		$\square$	3UF7937-0BA00-0		1	1 unit	42J
			0.5 m , round		$\nabla$	3UF7932-0BA00-0		1	1 unit	42J
3UF793.-0BA00-0										
Further accessories										
3ZY1311-0AA00	Push-in lugs for wall mounting	--	Two lugs are required per device	For HMI modules and communication modules	2	3ZY1311-0AA00		1	10 units	41L
Blank labels										
	Unit labeling plates ${ }^{1)}$		$\begin{aligned} & 20 \mathrm{~mm} x \\ & 7 \mathrm{~mm}, \\ & \text { titanium gray } \end{aligned}$	For SIRIUS devices	20	3RT2900-1SB20		100	340 units	41B
3RW55 starter kit										
3RW5951-1ES04	SIRIUS   3RW55 starter   kit	--	Including 3RW55 soft st 200 ... 480 V , Soft Starter ES 24 V power su connection ca network cable	arter 13 A , 24 V AC/DC V15.1, upply unit, able and RJ45	5	3RW5951-1ES04		1	1 unit	42S

1) PC labeling systems for individual inscription of unit labeling plates are available from: murrplastik Systemtechnik GmbH
(see page 16/16).

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> High Performance soft starters

## 3RW55 Failsafe soft starters > General data

## Overview

## More information

Homepage, see www.siemens.com/sirius-soft-starte
Industry Mall, see www.siemens.com/product?3RW55Failsafe
TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=3rw55

Industry Online Support (SIOS) topic page, see
https://support.industry.siemens.com/cs/ww/en/view/109747404
Simulation Tool for Soft Starters (STS), see page 6/9 or
https://support.industry.siemens.com/cs/ww/en/view/101494917
SIRIUS Soft Starter ES (TIA Portal), see page 6/9 or
https://support.industry.siemens.com/cs/ww/en/view/24230/dl


SIRIUS 3RW55 Failsafe soft starters device family
Equipped with the utmost functionality, the SIRIUS 3RW55 Failsafe High Performance soft starters confidently handle even difficult starting and stopping operations. Thanks to innovative torque control, the device can be used for drives with an output of between 5.5 kW and 560 kW (at 400 V ).
The innovative 3RW55 Failsafe soft starter features an integrated fail-safe digital input for directly connecting the EMERGENCY STOP, and thus covers SIL 1 STO applications. The HMI (with color display, local interface and a slot for micro SD memory card) and plug-in communication modules (PROFINET, PROFIBUS, EtherNet/IP and Modbus) ensure maximum flexibility.
With their modern hybrid switching technology, the 3RW55 Failsafe soft starters offer efficient switching for long-term, energy-saving use.


SIRIUS 3RW55 Failsafe High Performance soft starter with accessories (see page 6/52)

Benefits


Product characteristics / function	Performance features / benefits
Automatic parameterization	Extremely easy commissioning and reliability even under changing   load conditions
Hybrid switching technology and 3-phase motor control	Minimum power loss and optimum/symmetrical motor control
Integration into TIA Portal - communication modules optional	Efficient configuration and maximum flexibility in automation engineering
Removable HMI with color display, local interface, slot for   micro SD memory card	Reduced mechanical loading and optimum pump stop control
Pump stop and torque control	Suitable for the starting of explosion-proof motors interface and intuitive menu guidance
Certified according to ATEX/IECEx directive	Reduced costs and space requirements thanks to direct wiring of the
EMERGENCY STOP mushroom pushbutton to the soft starter for SIL 1	

# Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> High Performance soft starters 

## 3RW55 Failsafe soft starters > General data

Technical specifications

## More information

Technical specifications, see
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/25776/faq
https://support.industry.siemens.com/cs/ww/en/ps/25776/td
Simulation Tool for Soft Starters (STS), see page 6/9 or
Equipment Manual, see
https://support.industry.siemens.com/cs/ww/en/view/101494917
https://support.industry.siemens.com/cs/ww/en/view/109753752

Type		3RW551.-.HF. 4	$\begin{aligned} & \text { 3RW552.-.HF. } 4 \\ & \text { 3RW553.-.HF. } 4 \end{aligned}$	3RW554.-.HF. 4
Installation/fixing/dimensions				
Width x height x depth	mm	$170 \times 275 \times 152$	$185 \times 306 \times 203$	$210 \times 393 \times 203$
Type of mounting		Screw fixing		
Mounting position		Vertical (can be rotated +/-90 ${ }^{\circ}$ and tilted +/- $22.5{ }^{\circ}$ forward or backward)		
Distance to be maintained with side-by-side mounting				
- Above	mm	100		
- At the side	mm	5		
- Below	mm	75		
Maximum installation altitude above sea level ${ }^{1)}$	m	2000		
Degree of protection IP on the front acc. to IEC 6052		IP20	IP00 (IP20 with cover	
Touch protection on the front acc. to IEC 60529		Finger-safe for vertical touching from the front	Finger-safe for ve cover	hing from the front with

## Ambient conditions

Ambient temperature

- During operation ${ }^{2)}$
${ }^{\circ} \mathrm{C} \quad-25 \ldots+60$
- During storage and transport
${ }^{\circ} \mathrm{C} \quad-40 \ldots+80$

Environmental category according to IEC 60721

- During operation
- During storage
- During transport

1) Derating from 1000 m , see characteristic curve on page 6/8.

3K6 (no ice formation, only occasional condensation), 3C3 (no salt mist),
3S2 (sand must not get into the devices), 3M6
1K6 (only occasional condensation), 1C2 (no salt mist),
1 S 2 (sand must not get into the devices), 1 M 4
$2 \mathrm{~K} 2,2 \mathrm{C} 1,2 \mathrm{~S} 1,2 \mathrm{M} 2$ (max. height of fall 0.3 m )
2) Note derating above $40^{\circ} \mathrm{C}$

Type		3RW55..-.HF04	3RW55..-.HF14
Control circuit/control			
Control supply voltage			-----
- At AC/DC	V	24/24	
- At AC	V	--	110 ... 250
Relative negative tolerance/relative positive tolerance of the control supply voltage			
- At AC	\%	-20/20	-15/10
- At DC	\%	-20/20	-----
Frequency of the control supply voltage	Hz	$50 . . .60$	
-Relative negative tolerance/relative positive tolerance	\%	-10/10	
Type of overvoltage protection		Varistors	
Type of short-circuit protection for control circuit ${ }^{1)}$		Fuse $4 \mathrm{~A} \mathrm{gG}\left(I_{\mathrm{Cu}}=1 \mathrm{kA}\right)$, fuse 6 A quick-response ( $I_{\mathrm{Cu}}=1 \mathrm{kA}$ ), MCB C1 $\left(I_{\mathrm{Cu}}=600 \mathrm{~A}\right)$, MCB C6 $\left(I_{\mathrm{Cu}}=300 \mathrm{~A}\right)$	

${ }^{1)}$ Not included in scope of supply

Type	3RW55....HF.4	
Power electronics		
Operational voltage, rated value	V	$200 \ldots 480$
- Relative negative tolerance/relative positive tolerance	$\%$	$-15 / 10$
Operational voltage for inside-delta circuit, rated value	V	$200 \ldots 480$
- Relative negative tolerance/relative positive tolerance	$\%$	$-15 / 10$
Operating frequency	Hz	$50 \ldots 60$
- Relative negative tolerance/relative positive tolerance	$\%$	$-10 / 10$
Minimum load $\left[\%\right.$ of $\boldsymbol{I}_{\mathbf{M}} \mathbf{]}^{\mathbf{1}}$ )	$\%$	10
Maximum cable length between soft starter and motor	m	800

[^54]| Type |  | 3RW5513 | 3RW5514 | 3RW5515 | 3RW5516 | 3RW5517 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated operational current $I_{\text {e }}$ | A | 13 | 18 | 25 | 32 | 38 |
| Power electronics |  |  |  |  |  |  |
| Load rating with rated operational current $I_{\mathrm{e}}$ <br> IEC + UL/CSA, individual mounting at $40 / 50 / 60{ }^{\circ} \mathrm{C}$, AC-53a |  | 13/11.5/10.5 | 18/15.9/13.8 | 25/22.3/19.6 | 25/22.3/19.6 | 38/33.5/30.5 |
| Permissible rated motor current and starts/h |  |  |  |  |  |  |
| Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated | A | 13/11.5/10.5 | 18/15.9/13.8 | 25/22.3/19.6 | 32/28.4/26 | 38/33.5/30.5 |
| - $300 \% I_{\mathrm{M}}$ <br> - Start-up time 5 s <br> - Start-up time 10 s | $\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$ | $\begin{aligned} & 43 \\ & 18 \end{aligned}$ |
| - $350 \% I_{\mathrm{M}}$ <br> - Start-up time 5 s <br> - Start-up time 10 s | $\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$ | $\begin{aligned} & 28 \\ & 10 \end{aligned}$ |
| Normal starting (CLASS 10E) |  |  |  |  |  |  |
| Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated | A | 13/11.5/10.5 | 18/15.9/13.8 | 25/22.3/19.6 | 32/28.4/26 | 38/33.5/30.5 |
| - $300 \% I_{\mathrm{M}}$ <br> - Start-up time 10 s <br> - Start-up time 20 s | $\begin{aligned} & \text { 1/h } \\ & 1 / \mathrm{h} \end{aligned}$ | $\begin{aligned} & 21 \\ & 8 \end{aligned}$ |
| - $350 \% I_{\mathrm{M}}$ <br> - Start-up time 10 s <br> - Start-up time 20 s | $\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$ | $\begin{aligned} & 13 \\ & 4 \end{aligned}$ |
| Heavy starting (CLASS 20E) |  |  |  |  |  |  |
| Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated | A | 13/11.5/10.5 | 18/15.9/13.8 | 25/22.3/19.6 | 29.6/27.2/23.6 | 33.5/30.5/27.5 |
| - $300 \% I_{\mathrm{M}}$ <br> - Start-up time 20 s <br> - Start-up time 40 s | $\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$ | $\begin{aligned} & 10 \\ & 4 \end{aligned}$ | $10$ | $\begin{aligned} & 10 \\ & 4 \end{aligned}$ | $\begin{aligned} & 10 \\ & 4 \end{aligned}$ | $\begin{aligned} & 10 \\ & 4 \end{aligned}$ |
| - $350 \% I_{\mathrm{M}}$ <br> - Start-up time 20 s <br> - Start-up time 40 s | $\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$ | $\begin{aligned} & 7 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 7 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$ |
| Heavy starting (CLASS 30E) |  |  |  |  |  |  |
| Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated | A | 13/11.5/10.5 | 18/15.9/13.8 | 25/22.3/19.6 | 26/23.6/21.2 | 29/26/23 |
| - $300 \% I_{\mathrm{M}}$ <br> - Start-up time 30 s <br> - Start-up time 60 s | $\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$ | $\begin{aligned} & 7 \\ & 3 \end{aligned}$ |
| - $350 \% I_{M}$ <br> - Start-up time 30 s <br> - Start-up time 60 s | $\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$ | $\begin{aligned} & 4 \\ & 1.8 \end{aligned}$ |
| Adjustable rated motor current $I_{M}$ <br> - Minimum/maximum <br> - Minimum/maximum in inside-delta circuits | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 2.5 / 13 \\ & 4.3 / 22.5 \end{aligned}$ | $\begin{aligned} & 3.5 / 18 \\ & 6.1 / 31.1 \end{aligned}$ | $\begin{aligned} & 5 / 25 \\ & 8.7 / 43.3 \end{aligned}$ | $\begin{aligned} & 6.5 / 32 \\ & 11.3 / 55.4 \end{aligned}$ | $\begin{aligned} & 7.5 / 38 \\ & 13 / 65.8 \end{aligned}$ |

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters High Performance soft starters

## 3RW55 Failsafe soft starters > General data

Type		3RW5524	3RW5525	3RW5526	3RW5527
Rated operational current $I_{\text {e }}$	A	47	63	77	93
Power electronics					
Load rating with rated operational current $I_{\mathrm{e}}$ IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a	A	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
Permissible rated motor current and starts/h					
Normal starting (CLASS 10A)					
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{\mathrm{M}}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$			
- $350 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$1 / \mathrm{h}$ $1 / \mathrm{h}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$
Normal starting (CLASS 10E)					
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$			
- $350 \% I_{\mathrm{M}}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$			
Heavy starting (CLASS 20E)					
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$			
- $350 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \end{aligned}$
Heavy starting (CLASS 30E)					
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	43.4/38/34.4	53/48/43	68/62/56	82.5/75.5/65
- $300 \% I_{M}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$			
- $350 \% I_{\mathrm{M}}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$			
Adjustable rated motor current $I_{\mathrm{M}}$   - Minimum/maximum   - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 / 47 \\ & 17.3 / 81.4 \end{aligned}$	$\begin{aligned} & 13 / 63 \\ & 22.5 / 109 \end{aligned}$	$\begin{aligned} & 16 / 77 \\ & 27.7 / 133 \end{aligned}$	$\begin{aligned} & 19 / 93 \\ & 32.9 / 161 \end{aligned}$

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters
High Performance soft starters
3RW55 Failsafe soft starters > General data


## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters High Performance soft starters

## 3RW55 Failsafe soft starters > General data

Type		3RW5543	3RW5544	3RW5545	3RW5546	3RW5547	3RW5548
Rated operational current $I_{\text {e }}$	A	210	250	315	370	470	570
Power electronics							
Load rating with rated operational current $I_{\mathrm{e}}$ IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a		210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
Permissible rated motor current and starts/h							
Normal starting (CLASS 10A)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
- $300 \% I_{\mathrm{M}}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 43 \\ & 13 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 38 \\ & 14 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 32 \\ & 13 \end{aligned}$	$\begin{aligned} & 13 \\ & 3 \end{aligned}$
- $350 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 14 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 19 \\ & 5 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 19 \\ & 6 \end{aligned}$	$\begin{aligned} & 4 \\ & 0.4 \\ & \hline \end{aligned}$
Normal starting (CLASS 10E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	551/490/445
- $300 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 2 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 14 \\ & 4 \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$	$\begin{aligned} & 13 \\ & 3 \end{aligned}$	$5$
- $350 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 0.4 \end{aligned}$	$1$
Heavy starting (CLASS 20E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	162/146/130	200/180/160	231/207/183	258/230/202	272/254/236	284/262/240
- $300 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$					
- $350 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$				
Heavy starting (CLASS 30E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	138/122/106	160/140/120	183/159/135	202/174/160	210/190/170	220/200/180
- $300 \% I_{M}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$					
- $350 \% I_{\mathrm{M}}$   - Start-up time 30 s   - Start-up time 60 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$					
Adjustable rated motor current $I_{\mathrm{M}}$   - Minimum/maximum   - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 42 / 210 \\ & 72.7 / 363 \end{aligned}$	$\begin{aligned} & 50 / 250 \\ & 86.6 / 433 \end{aligned}$	$\begin{aligned} & 63 / 315 \\ & 109.1 / 545 \end{aligned}$	$\begin{aligned} & 74 / 370 \\ & 128.2 / 640 \end{aligned}$	$\begin{aligned} & 94 / 470 \\ & 162.8 / 814 \end{aligned}$	$\begin{aligned} & 114 / 570 \\ & 197.5 / 987 \end{aligned}$

## Motor feeders according to IEC with 3RV2 motor starter protectors or 3VA circuit breakers (without semiconductor protection)

Type of coordination "1", CLASS 10,
short-circuit breaking capacity $I_{\mathrm{q}}$ in kA, see table
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.

Soft starters	Motor starter protector for 400 V systems		for 480 V systems		Motor starter protector for 400 V systems		for 480 V systems	
Q11 Type	Q1   Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$	Q1   Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$	Q1   Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$	Q1 Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$
$\begin{array}{lc} \hline \begin{array}{l} \text { Type of } \\ \text { coordination } \end{array} & \begin{array}{c} \text { ToC } \\ 1 \end{array} \\ \hline \text { "1" } \end{array}$	Inline circuit				Inside-delta circuit			
3RW5513	3RV2032-4TA10	65	3RV2032-4TA10	18	3RV2032-4DA10	65	3RV2032-4DA10	18
3RW5514	3RV2032-4DA10	65	3RV2032-4DA10	15	3RV2032-4EA10	65	3RV2032-4EA10	15
3RW5515	3RV2032-4EA10	65	3RV2032-4EA10	15	3RV2032-4VA10	65	3RV2032-4VA10	15
3RW5516	3RV2032-4VA10	65	3RV2032-4VA10	10	3RV2032-4JA10	65	3RV2032-4JA10	10
3RW5517	3RV2032-4WA10	65	3RV2032-4WA10	10	3RV2032-4RA10	65	3RV2032-4RA10	10
3RW5524	3RV2032-4JA10	65	3RV2032-4JA10	10	3RV2032-4RA10	65	3RV2032-4RA10	10
3RW5525	3VA2163-7MN32-0AA0	65	3VA2163-7MN32-0AA0	20	3VA2110-7MN32-0AAO	65	3VA2110-7MN32-OAA0	20
3RW5526	3VA2110-7MN32-0AA0	65	3VA2110-7MN32-0AA0	20	3VA2216-7MN32-0AAO	65	3VA2216-7MN32-0AA0	20
3RW5527	3VA2216-7MN32-0AA0	15	3VA2216-7MN32-0AA0	10	3VA2220-7MN32-0AAO	15	3VA2220-7MN32-0AA0	10
3RW5534	3VA2216-7MN32-0AA0	65	--	--	3VA2220-7MN32-0AA0	65	--	--
3RW5535	3VA2220-7MN32-0AA0	65	--	--	3VA2325-7MN32-0AA0	65	--	--
3RW5536	3VA2325-7MN32-0AA0	30	3VA2325-7MN32-0AA0	10	3VA2440-7MN32-0AAO	30	3VA2440-7MN32-0AA0	10
3RW5543	3VA2325-7MN32-0AA0	65	3VA2325-7MN32-0AA0	65	3VA2440-7MN32-0AAO	65	3VA2440-7MN32-0AA0	65
3RW5544	3VA2440-7MN32-0AA0	65	3VA2440-7MN32-0AA0	65	3VA2450-7MN32-0AA0	65	3VA2450-7MN32-0AA0	65
3RW5545	3VA2440-7MN32-0AA0	65	3VA2440-7MN32-0AA0	65	3VA2580-6HN32-0AAO	65	3VA2580-6HN32-0AA0	65
3RW5546	3VA2440-7MN32-0AA0	65	3VA2440-7MN32-0AA0	65	3VA2580-6HN32-0AAO	65	3VA2580-6HN32-0AA0	65
3RW5547	3VA2450-7MN32-0AA0	65	3VA2450-7MN32-0AA0	65	3VA2510-6HN32-0AAO	65	3VA2510-6HN32-0AA0	65
3RW5548	3VA2580-6HN32-0AAO	65	3VA2580-6HN32-0AA0	65	3VA2510-6HN32-0AAO	65	3VA2510-6HN32-0AAO	65

Note:
The service factor and measurement inaccuracies, for example, have been taken into account for the selection of the specified motor starter protectors/circuit breakers; the specified shortcircuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller motor starter protectors/circuit breakers from the same series can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must match the connected three-phase motor, the short-circuit and overload requirements of the application, and the line protection for the cables used.

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters High Performance soft starters

## 3RW55 Failsafe soft starters > General data

## Motor feeders according to IEC with 3NA3 fuses

gG class full-range fuses for cable and line protection according to IEC 60269-2, without semiconductor protection

Type of coordination "1",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders
with soft starters, see page 6/11.


Note:
The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

## Motor feeders according to IEC with 3NE1 SITOR fuses

gR class full-range fuses for semiconductor protection, cable and line protection

Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.

Soft starters	gR class fuse for systems up to 480 V	Line contactor (optional) for systems up to 480 V
Q11	F'1	Q21
Type	Type	Type
Type of    coordina-    cor    tion "2"	Inline circuit	
3RW5513   3RW5514   3RW5515   3RW5516   3RW5517	3NE1815-0   3NE1802-0   3NE1817-0   3NE1818-0   3NE1820-0	3RT2025   3RT2026   3RT2027   3RT2035   3RT2035
3RW5524   3RW5525   3RW5526   3RW5527	3NE1021-2   3NE1022-0   3NE1224-0   3NE1224-0	3RT2036   3RT2037   3RT2038   3RT2046
3RW5534 3RW5535 3RW5536	3NE1225-0   3NE1227-0   3NE1230-0	3RT1054   3RT1055   3RT1056
3RW5543   3RW5544   3RW5545   3RW5546   3RW5547   3RW5548	3NE1230-2   3NE1331-0   3NE1334-2   3NE1334-2   3NE1436-2   3NE1437-2	3RT1064   3RT1065   3RT1075   3RT1075   3RT1076   3TF68

Note:
The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.
In inside-delta circuits, a gR class full-range fuse could not provide the semiconductor protection of the delta-connected soft starter with a short-circuit breaking capacity that is adequate for practical use. In this case, we recommend using aR class partial-range fuses for semiconductor protection for type of coordination "2" (see page 6/48).

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> High Performance soft starters

## 3RW55 Failsafe soft starters > General data

## Motor feeders according to IEC with 3NE8 / 3NE3 / 3NC3 fuses

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders
with soft starters, see page 6/11.


Soft starters	gG class fuse	aR class fuse	Line contactor   (optional)
	for systems   up to 480 V	for systems   up to 480 V	for systems   up to 480 V
Q11   Type	F1	F3	Q21


Type of   coordination   "2"	ToC   2	In
3RW5513		
3RW5514	$3 N$	


3RW5514	3RW5515
3RW5516	3


3RW5517	3NA3824-6	3NE8024-1	3RT2035	3
3RW5524	3NA3824-6	3NE8024-1	3RT2036	3NA
3RW5525	3NA3830-6	3NE3227	3RT2037	3NA
3RW5526	3NA3132-6	3NE3227	3RT2038	

## Reversing operation with reversing contactors

Note:
For general recommendations for constructing motor feeders
with soft starters, see page 6/11.
(For an example circuit, see
3RW55 Equipment Manual, Appendix A.3)

Soft starters	Reversing contactor assembly   for systems up to 480 V	For reversing contactor   for systems up to 480 V
Q11	Q21 / Q22	Q21 / Q22
Type	Type	Type
3RW5513	3RA2325	3RT2025
3RW5514	3RA2326	3RT2026
3RW5515	3RA2327	3RT2027
3RW5516	3RA2335	3RT2035
3RW5517	3RA2335	3RT2035
3RW5524	3RA2336	3RT2036
3RW5525	3RA2337	3RT2037
3RW5526	3RA2338	3RT2038
3RW5527	3RA2346	3RT2046
3RW5534	--	3RT1054
3RW5535	--	3RT1055
3RW5536	--	3RT1056
3RW5543	--	3RT1064
3RW5544	--	3RT1065
3RW5545	--	3RT1075
3RW5546	--	3RT1075
3RW5547	--	3RT1076
3RW5548	--	3TF68

# Switching devices－Soft starters and solid－state switching devices <br> SIRIUS 3RW soft starters <br> High Performance soft starters 

## 3RW55 Failsafe soft starters＞Inline circuit IE3／IE4 ready

Selection and ordering data
For normal starting（CLASS 10E）


3RW551．


3RW552．


3RW553．


3RW554．

At $40{ }^{\circ} \mathrm{C}$			At $50{ }^{\circ} \mathrm{C}$				$S D^{1)}$	Article No．	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS＊	PG
Opera－	Operating power for three－phase motors $\begin{array}{ll}\text { At } & \text { At } \\ 230 \mathrm{~V} & 400 \mathrm{~V}\end{array}$		Opera－	Rating［hp］	three－phas	motors						
current			current	$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$						
A	kW	kW	A	hp	hp	hp	d					
Operational voltage 200 ．．． 480 V												
$\begin{aligned} & 13 \\ & 18 \\ & 25 \end{aligned}$	3	5.5	11.5	2	3	7.5	5	3RW5513－■HF口4		1	1 unit	42 S
	4	7.5	15.9	3	5	10	5	3RW5514－■HF■4		1	1 unit	42 S
	5.5	11	22.3	5	7.5	15	5	3RW5515－■HF口4		1	1 unit	42 S
$\begin{aligned} & 32 \\ & 38 \end{aligned}$	7.5	15	28.4	7.5	10	20	5	3RW5516－■HF口4		1	1 unit	42 S
	11	18.5	33.5	10	10	20	5	3RW5517－口HF口4		1	1 unit	42 S
47	11	22	41.6	10	10	30	5	3RW5524－पHF口4		1	1 unit	42 S
63	18.5	30	55.5	15	20	40	5	3RW5525－口HF■4		1	1 unit	42 S
7793	22	37	68	20	25	50	5	3RW5526－口HF■4		1	1 unit	42 S
	22	45	82.5	25	30	60	5	3RW5527－■HF■4		1	1 unit	42 S

Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

## Control supply voltage

24 V AC／DC


1） 3 RW55 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

Note：
For the constraints for the motor outputs specified here， see page 6／8．

At $40{ }^{\circ} \mathrm{C}$			At $50{ }^{\circ} \mathrm{C}$				$S D^{1)}$	Article No．	Price per PU		PS＊	PG	
Opera－	Operating power for three－phase motors		Opera－ tional current	Rating［hp］for three－phase motors									
current			$\begin{aligned} & \text { At } \\ & \text { 200/208 V } \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$								
A	kW	kW		A	hp	hp	hp	d					
Operational voltage 200 ．．． 480 V													
113	30	55	101	30	30	75	5	3RW5534－■HF口4		1	1 unit	42 S	
143	37	75	128	40	40	100	5	3RW5535－■HF口4		1	1 unit	42 S	
171	45	90	153	50	50	100	5	3RW5536－■HF■4		1	1 unit	42 S	
210	55	110	186	60	60	150	5	3RW5543－■HF口4		1	1 unit	42 S	
250	75	132	220	60	75	150	5	3RW5544－■HF■4		1	1 unit	42 S	
315	90	160	279	75	100	200	5	3RW5545－■HF口4		1	1 unit	42 S	
370	110	200	328	100	125	250	5	3RW5546－■HF口4		1	1 unit	42 S	
470	132	250	416	150	150	350	5	3RW5547－■HF口4		1	1 unit	42 S	
570	160	315	504	150	200	400	5	3RW5548－■HF■4		1	1 unit	42 S	

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

## Control supply voltage

24 V AC／DC $\square$
1） 3 RW55 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

Note：
For the constraints for the motor outputs specified here， see page 6／8．

## Selection and ordering data

## For normal starting（CLASS 10E）



Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

Control supply voltage
24 V AC／DC
110 ．．． 250 V AC


1） 3 RW55 soft starter with screw terminals for operational voltage up to 480 V ：Note：
Standard delivery time SD＝ 1 day（d）．
For the constraints for the motor outputs specified here， see page 6／8．

At $40{ }^{\circ} \mathrm{C}$ for inside－delta circuit			At $50{ }^{\circ} \mathrm{C}$ for inside－delta circuit				SD ${ }^{1)}$	Article No．	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS＊	PG
Opera－	Operating power for three－phase motors		Opera－	Rating［hp］	three－phas	motors						
current			current	$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	At 460/480 V						
A	kW	kW	A	hp	hp	hp	d					
Operational voltage $200 \ldots 480 \mathrm{~V}$												
196	55	110	175	50	60	125	5	3RW5534－－HFD4		1	1 unit	42 S
248	75	132	222	75	75	150	5	3RW5535－DHFD4		1	1 unit	42 S
296	90	160	265	75	100	200	5	3RW5536－■HF口4		1	1 unit	42 S
364	110	200	322	100	125	250	5	3RW5543－■HF口4		1	1 unit	42 S
433	132	250	381	125	150	300	5	3RW5544－DHFロ4		1	1 unit	42 S
546	160	315	483	150	200	400	5	3RW5545－■HF口4		1	1 unit	42 S
641	200	355	568	200	200	450	5	3RW5546－－HF口4		1	1 unit	42 S
814	250	400	721	250	250	600	5	3RW5547－■HFD4		1	1 unit	42 S
987	315	560	873	300	350	750	5	3RW5548－■HF口4		1	1 unit	42 S

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

Control supply voltage
24 V AC／DC
$\begin{array}{ll}2 \\ 6 \\ & \\ \\ & \\ & \\ & 0 \\ & 1\end{array}$

[^55]Note：
For the constraints for the motor outputs specified here， see page 6／8．

# Switching devices - Soft starters and solid-state switching devices 

SIRIUS 3RW soft starters
High Performance soft starters

## 3RW55 Failsafe soft starters > Accessories

Selection and ordering data



\section*{| Fan covers |
| :--- |
|  |
| $-2=3)$ |}

3RW5983-0FC00
Terminal covers


[^56]Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters High Performance soft starters

3RW55 Failsafe soft starters > Accessories


## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> General Performance soft starters

## 3RW52 soft starters > General data

## Overview

## More information

Homepage, see www.siemens.com/sirius-soft-starter
Industry Mall, see www.siemens.com/product?3RW52
TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=3rw52
Industry Online Support (SIOS) topic page, see
https://support.industry.siemens.com/cs/ww/en/view/109747404


Simulation Tool for Soft Starters (STS), see page 6/9 or
https://support.industry.siemens.com/cs/ww/en/view/101494917
SIRIUS Soft Starter ES (TIA Portal) for diagnostics, see page 6/9 or https://support.industry.siemens.com/cs/ww/en/ps/24230/dl

SIRIUS 3RW Soft Starter block library for SIMATIC PCS 7, see page 6/9 or https://support.industry.siemens.com/cs/ww/en/view/109770336

SIRIUS 3RW52 General Performance soft starters are the ideal solution for standard applications. With ideal 3-phase motor control, they cover the performance range from 5.5 kW to 560 kW (at 400 V ).

Optional HMI modules, plug-in communication modules (PROFINET, PROFIBUS, EtherNet/IP and Modbus) and either an analog output or thermistor motor protection ensure maximum flexibility.

With their modern hybrid switching technology, the SIRIUS 3RW52 soft starters offer efficient switching for long-term, energy-saving use

SIRIUS 3RW52 soft starters device family


SIRIUS 3RW52 General Performance soft starter with accessories (see page 6/70), for expansion with HMI module or communication module

Switching devices - Soft starters and solid-state switching devices
SIRIUS 3RW soft starters General Performance soft starters

Benefits


Product characteristics / function	Performance features / benefits
Hybrid switching technology and 3-phase motor control	Minimum power loss and optimum/symmetrical motor control
TIA integration - communication modules and HMI modules optional	Efficient configuration and maximum flexibility in automation engineering
Soft Torque	Reduced mechanical loading and optimum pump stop
Parameterization using potentiometers	Simple and fast commissioning
Wide range for control supply and main voltage	Low variance, high system availability even with weak supply networks

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> General Performance soft starters

## 3RW52 soft starters > General data

Technical specifications

## More information

Technical specifications, see
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/25100/faq
https://support.industry.siemens.com/cs/ww/en/ps/25100/td
Simulation Tool for Soft Starters (STS), see page 6/9 or
Equipment Manual, see
https://support.industry.siemens.com/cs/ww/en/view/101494917
https://support.industry.siemens.com/cs/ww/en/view/109753751


Distance to be maintained with side-by-side mounting

- Above mm 100
- At the side mm 5
- Below mm 75

Maximum installation altitude above sea level ${ }^{\text {1) }} \quad$ m 5000

| Degree of protection IP on the front acc. to IEC 60529 | IP20 |
| :--- | :--- |$\quad$ IP00 (IP20 with cover) | Touch protection on the front acc. to IEC 60529 | Finger-safe for vertical touching <br> from the front |
| :--- | :--- | | Finger-safe for vertical touching from the fron |
| :--- |
| with cover |

Ambient conditions

## Ambient temperature

- During operation ${ }^{2)}$
${ }^{\circ} \mathrm{C} \quad-25 \ldots+60$
- During storage and transport
${ }^{\circ} \mathrm{C} \quad-40 \ldots+80$
- During operation
- During storage
- During transport

1) Derating from 1000 m , see characteristic curve on page $6 / 8$
2) Note derating above $40^{\circ} \mathrm{C}$

3K6 (no ice formation, only occasional condensation), 3C3 (no salt mist) 3S2 (sand must not get into the devices), 3M6
1K6 (only occasional condensation), 1C2 (no salt mist),
1S2 (sand must not get into the devices), 1M4
2K2, 2C1, 2S1, 2M2 (max. height of fall 0.3 m )

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters General Performance soft starters

3RW52 soft starters > General data

Type		3RW52..-..C0.	3RW52..-..C1.
Control circuit/control			
Control supply voltage			
- At AC/DC	V	24/24	----
- At AC	V	--	$110 . .250$
- Relative negative tolerance/relative positive tolerance with AC	\%	-20/20	-15/10
- Relative negative tolerance/relative positive tolerance with DC	\%	-20/20	--/--
Frequency of the control supply voltage	Hz	$50 \ldots 60$	
- Relative negative tolerance/relative positive tolerance	\%	-10/10	
Type of overvoltage protection		Varistors	
Type of short-circuit protection for control circuit ${ }^{1)}$		Fuse 4 A gG $\operatorname{MCB} C 1\left(\boldsymbol{I}_{\mathrm{Cu}}=\right.$	$\begin{aligned} & \text { esponse }\left(\boldsymbol{I}_{\mathrm{Cu}}=1 \mathrm{kA}\right) \text {, } \\ & 0 \text { A) } \end{aligned}$
1) Not included in scope of supply			
Type		3RW52..-..C. 4	3RW52..-..C. 5
Power electronics			
Operational voltage, rated value	V	$200 . . .480$	$200 . . .600$
- Relative negative tolerance/relative positive tolerance	\%	-15/10	
Operational voltage for inside-delta circuit, rated value	V	200 ... 480	200 ... 600
- Relative negative tolerance/relative positive tolerance	\%	-15/10	
Operating frequency	Hz	50 ... 60	
- Relative negative tolerance/relative positive tolerance	\%	-10/10	
Minimum load [\% of $\left.I_{M}\right]^{1 /}$	\%	15	
Maximum cable length between soft starter and motor	m	800	
${ }^{1)}$ Relative to the smallest adjustable $\boldsymbol{I}_{\mathrm{e}}$.			

## Switching devices - Soft starters and solid-state switching devices

SIRIUS 3RW soft starters
General Performance soft starters

## 3RW52 soft starters > General data

Type		3RW5213	3RW5214	3RW5215	3RW5216	3RW5217
Rated operational current $I_{\text {e }}$	A	13	18	25	32	38
Power electronics						
Load rating with rated operational current $I_{\mathrm{e}}$ IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	32/28.4/26	38/33.5/30.5
Permissible rated motor current and starts Normal starting (CLASS 10A)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	32/28.4/26	38/33.5/30.5
- $300 \% I_{\mathrm{M}}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$				
Normal starting (CLASS 10E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	32/28.4/26	38/33.5/30.5
- $300 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$				
Heavy starting (CLASS 20E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	29.6/27.2/23.6	33.5/30.5/27.5
- $300 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$			
Adjustable rated motor current $I_{\mathrm{M}}$   - Minimum/maximum   - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5.5 / 13 \\ & 9.5 / 22.5 \end{aligned}$	$\begin{aligned} & 7.5 / 18 \\ & 13 / 31.2 \end{aligned}$	$\begin{aligned} & \text { 11.5/25 } \\ & \text { 19.9/43.3 } \end{aligned}$	$\begin{aligned} & 14 / 32 \\ & 24.2 / 55.4 \end{aligned}$	$\begin{aligned} & 15.5 / 38 \\ & 26.8 / 65.8 \end{aligned}$

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters General Performance soft starters

3RW52 soft starters > General data

Type		3RW5224	3RW5225	3RW5226	3RW5227
Rated operational current $I_{\mathrm{e}}$	A	47	63	77	93
Power electronics					
Load rating with rated operational current $I_{\mathrm{e}}$ IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a	A	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
Permissible rated motor current and starts/h Normal starting (CLASS 10A)					
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$			
- $350 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$
Normal starting (CLASS 10E)					
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{\mathrm{M}}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$			
- $350 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$			
Heavy starting (CLASS 20E)					
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	47/41.6/36.2	63/55.5/50.5	65/59/53	93/82.5/75.5
- $300 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 3 \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$
- $350 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$
Adjustable rated motor current $I_{M}$   - Minimum/maximum   - Minimum/maximum in inside-delta circuits	A A	$\begin{aligned} & 20 / 47 \\ & 34.6 / 81.4 \end{aligned}$	$\begin{aligned} & 25.5 / 63 \\ & 44.2 / 109 \end{aligned}$	$\begin{aligned} & 32 / 77 \\ & 55.4 / 133 \end{aligned}$	$\begin{aligned} & 40.5 / 93 \\ & 70.1 / 161 \end{aligned}$

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> General Performance soft starters

## 3RW52 soft starters > General data

Type		3RW5234	3RW5235	3RW5236
Rated operational current $I_{\text {e }}$	A	113	143	171
Power electronics				
Load rating with rated operational current $I_{\mathrm{e}}$   IEC + UL/CSA, individual mounting at 40/50/60 ${ }^{\circ} \mathrm{C}, \mathrm{AC}-53 \mathrm{a}$	A	113/101/89	143/128/118	171/153/141
Permissible rated motor current and starts/h				
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	113/101/89	143/128/118	171/153/141
- $300 \% I_{\mathrm{M}}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$
- $350 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 27 \\ & 8 \end{aligned}$	$\begin{aligned} & 20 \\ & 4 \end{aligned}$
Normal starting (CLASS 10E)				
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	113/101/89	139/127/116	158/146/129
- $300 \% I_{\mathrm{M}}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$
- $350 \% I_{\mathrm{M}}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 12 \\ & 1 \end{aligned}$	$\begin{aligned} & 12 \\ & 1 \end{aligned}$
Heavy starting (CLASS 20E)				
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	109/97/85	113/103/93	129/117/105
- $300 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$
- $350 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$
Adjustable rated motor current $I_{\mathrm{M}}$   - Minimum/maximum   - Minimum/maximum in inside-delta circuits	A A	$\begin{aligned} & 53 / 113 \\ & 91.8 / 196 \end{aligned}$	$\begin{aligned} & 68 / 143 \\ & 118 / 248 \end{aligned}$	$\begin{aligned} & 81 / 171 \\ & 140 / 296 \end{aligned}$

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters General Performance soft starters

3RW52 soft starters > General data

Type		3RW5243	3RW5244	3RW5245	3RW5246	3RW5247	3RW5248
Rated operational current $I_{\mathrm{e}}$	A	210	250	315	370	470	570
Power electronics							
Load rating with rated operational current $I_{\mathrm{e}}$ IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
Permissible rated motor current and starts/h Normal starting (CLASS 10A)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
- $300 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 14 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 11 \end{aligned}$	$\begin{aligned} & 20 \\ & 6 \end{aligned}$
- $350 \% I_{M}$   - Start-up time 5 s   - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 16 \\ & 4 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 17 \\ & 5 \end{aligned}$	$\begin{aligned} & 9 \\ & 1 \end{aligned}$
Normal starting (CLASS 10E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	197/184/170	250/220/200	279/255/231	370/328/300	398/362/326	460/416/372
- $300 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 18 \\ & 7 \end{aligned}$				
- $350 \% I_{M}$   - Start-up time 10 s   - Start-up time 20 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 12 \\ & 1 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 12 \\ & 3 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 11 \\ & 2 \end{aligned}$
Heavy starting (CLASS 20E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	162/146/130	200/180/160	195/171/147	258/230/202	272/236/218	284/262/240
- $300 \% I_{M}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$					
- $350 \% I_{\text {M }}$   - Start-up time 20 s   - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$					
Adjustable rated motor current $I_{M}$   - Minimum/maximum   - Minimum/maximum in inside-delta circuits	A	$\begin{aligned} & 90 / 210 \\ & 156 / 364 \end{aligned}$	$\begin{aligned} & 100 / 250 \\ & 173 / 433 \end{aligned}$	$\begin{aligned} & 135 / 315 \\ & 234 / 546 \end{aligned}$	$\begin{aligned} & 160 / 370 \\ & 277 / 641 \end{aligned}$	$\begin{aligned} & 200 / 470 \\ & 346 / 814 \end{aligned}$	$\begin{aligned} & 240 / 570 \\ & 416 / 987 \end{aligned}$

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> General Performance soft starters

## 3RW52 soft starters > General data

## Motor feeders according to IEC with 3RV2 motor starter protectors or 3VA circuit breakers (without semiconductor protection)

Type of coordination "1", CLASS 10,
short-circuit breaking capacity $I_{\mathrm{q}}$ in KA , see table
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.

Soft starters   Q11   Type	Motor starter protector for 400 V systems   Q1   Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$	for 500 V systems   Q1   Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$	Motor starter protecto for 400 V systems   Q1   Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$	for 500 V systems   Q1   Type	$\begin{aligned} & I_{\mathrm{q}} \\ & \mathrm{kA} \end{aligned}$
Type of coordination "1"	Inline circuit				Inside-delta circuit			
3RW5213   3RW5214   3RW5215   3RW5216   3RW5217	3RV2032-4TA10 3RV2032-4DA10 3RV2032-4EA10 3RV2032-4VA10 3RV2032-4WA10	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$	3RV2032-4TA10 3RV2032-4DA10 3RV2032-4EA10 3RV2032-4VA10 3RV2032-4WA10	$\begin{aligned} & 18 \\ & 15 \\ & 15 \\ & 10 \\ & 10 \end{aligned}$	3RV2032-4DA10   3RV2032-4EA10   3RV2032-4VA10   3RV2032-4JA10   3RV2032-4RA10	65 65 65 65 65	3RV2032-4DA10 3RV2032-4EA10 3RV2032-4VA10 3RV2032-4JA10 3RV2032-4RA10	18 15 15 10 10
3RW5224   3RW5225   3RW5226   3RW5227	3RV2032-4JA10   3VA2163-7MN32-OAAO   3VA2110-7MN32-OAAO   3VA2216-7MN32-0AAO	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { 3RV2032-4JA10 } \\ & \text { 3VA2163-7MN32-0AAO } \\ & \text { 3VA2110-7MN32-0AAO } \\ & \text { 3VA2216-7MN32-0AAO } \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 10 \end{aligned}$	3RV2032-4RA10   3VA2110-7MN32-OAAO   3VA2216-7MN32-OAAO   3VA2220-7MN32-OAAO	65 65 65 15	$\begin{aligned} & \text { 3RV2032-4RA10 } \\ & \text { 3VA2110-7MN32-0AA0 } \\ & \text { 3VA2216-7MN32-0AA0 } \\ & \text { 3VA2220-7MN32-0AA0 } \end{aligned}$	10 20 20 10
3RW5234 3RW5235 3RW5236	3VA2216-7MN32-0AA0 3VA2220-7MN32-OAAO 3VA2325-7MN32-0AAO	$\begin{aligned} & 65 \\ & 65 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-- \\ & -- \\ & \text { 3VA2325-7MN32-0AA0 } \end{aligned}$	${ }^{--}$	3VA2220-7MN32-OAAO 3VA2325-7MN32-OAAO 3VA2440-7MN32-0AA0	65 65 30	3VA2440-7MN32-OAAO	-- 10
3RW5243   3RW5244   3RW5245   3RW5246   3RW5247   3RW5248	3VA2325-7MN32-OAAO 3VA2440-7MN32-0AA0 3VA2440-7MN32-0AA0 3VA2440-7MN32-0AAO 3VA2450-7MN32-0AA0 3VA2580-6HN32-0AAO	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$	3VA2325-7MN32-OAAO   3VA2440-7MN32-OAAO   3VA2440-7MN32-OAAO   3VA2440-7MN32-OAAO   3VA2450-7MN32-0AAO   3VA2580-6HN32-0AA0	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$	3VA2440-7MN32-OAAO 3VA2450-7MN32-0AA0 3VA2580-6HN32-0AAO 3VA2580-6HN32-0AA0 3VA2510-6HN32-0AAO 3VA2510-6HN32-0AAO	65 65 65 65 65 65	3VA2440-7MN32-0AAO 3VA2450-7MN32-0AAO 3VA2580-6HN32-0AAO 3VA2580-6HN32-0AA0 3VA2510-6HN32-0AAO 3VA2510-6HN32-0AAO	65 65 65 65 65 65

Note:
The service factor and measurement inaccuracies, for example, have been taken into account for the selection of the specified motor starter protectors/circuit breakers; the specified shortcircuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller motor starter protectors/circuit breakers from the same series can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must match the connected three-phase motor, the short-circuit and overload requirements of the application, and the line protection for the cables used.

## Motor feeders according to IEC with 3NA3 fuses

gG class full-range fuses for cable and line protection according
to IEC 60269-2, without semiconductor protection
Type of coordination "1",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders
with soft starters, see page 6/11.


Note:
The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> General Performance soft starters

## 3RW52 soft starters > General data

## Motor feeders according to IEC with 3NE1 SITOR fuses

gR class full-range fuses for semiconductor protection, cable and line protection

Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.


Soft starters	gR class fuse	Line contactor (optional)	
	for systems up to 600 V	for systems up to 480 V	for systems up to 600 V
Q11	F'1	Q21	Q21
Type	Type	Type	Type
Type of    coordination    "2"	Inline circuit		
3RW5213   3RW5214   3RW5215   3RW5216   3RW5217	3NE1815-0   3NE1802-0   3NE1817-0   3NE1818-0   3NE1820-0	3RT2025 3RT2026 3RT2027 3RT2035 3RT2035	3RT2025 3RT2027 3RT2037 3RT2037 3RT2037
3RW5224   3RW5225   3RW5226   3RW5227	3NE1021-2   3NE1022-0   3NE1224-0   3NE1224-0	$\begin{aligned} & \text { 3RT2036 } \\ & \text { 3RT2037 } \\ & \text { 3RT2038 } \\ & \text { 3RT2046 } \end{aligned}$	$\begin{aligned} & \text { 3RT2037 } \\ & \text { 3RT2046 } \\ & \text { 3RT2046 } \\ & \text { 3RT2047 } \end{aligned}$
$\begin{aligned} & \text { 3RW5234 } \\ & \text { 3RW5235 } \\ & \text { 3RW5236 } \end{aligned}$	$\begin{aligned} & \text { 3NE1225-0 } \\ & \text { 3NE1227-0 } \\ & \text { 3NE1230-0 } \end{aligned}$	3RT1054   3RT1055   3RT1056	3RT1054   3RT1055   3RT1064
3RW5243   3RW5244   3RW5245   3RW5246   3RW5247   3RW5248	$\begin{aligned} & \text { 3NE1230-21) } \\ & \text { 3NE1331-0 } \\ & \text { 3NE1334-2 } \\ & \text { 3NE1334-2 } \\ & \text { 3NE1436-2 } \\ & \text { 3NE1437-2 } \end{aligned}$	$\begin{aligned} & \text { 3RT1064 } \\ & \text { 3RT1065 } \\ & \text { 3RT1075 } \\ & \text { 3RT1075 } \\ & \text { 3RT1076 } \\ & \text { 3TF68 } \end{aligned}$	3RT1064   3RT1065   3RT1075   3RT1075   3RT1276   3TF68

1) For systems up to 500 V .

Note:
The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must however, be suitable for the connected three-phase motor and the line protection for the cables used.
In inside-delta circuits, a gR class full-range fuse could not provide the semiconductor protection of the delta-connected soft starter with a short-circuit breaking capacity that is adequate for practical use. In this case, we recommend using aR class partial-range fuses for semiconductor protection for type of coordination "2" (see page 6/65).

## Motor feeders according to IEC with fuses 3NE8 / 3NE4 / 3NE3

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders
with soft starters, see page 6/11.

Soft starters	gG class fuse	aR class fuse	Line cont (optional)	ctor	gG class fuse	$a \mathrm{R}$ class fuse	Line contact	(optional)		
	for systems up to 600 V	for systems up to 500 V	for systems up to 480 V	for   systems up to 600 V	for systems up to 600 V	for systems up to 600 V	for systems up to 480 V in the supply cable	for systems up to 600 V in the supply cable	for   systems   up to   480 V   in the delta	for   systems   up to   600 V   in the delta
Q11	F1	F3	Q21	Q21	F1	F3	Q21	Q21	Q21	Q21
Type										
$\begin{array}{lr} \hline \begin{array}{l} \text { Type of } \\ \text { coordination } \end{array} & \begin{array}{r} \text { ToC } \\ \text { co } \\ \hline \end{array} \\ \hline \end{array}$	Inline circuit				Inside-delta cir	rcuit				
3RW5213	3NA3820-6	3NE8017-1	3RT2025	3RT2025	3NA3820-6	3NE8017-1	3RT2027	3RT2035	3RT2025	3RT2025
3RW5214	3NA3820-6	3NE8020-1	3RT2026	3RT2027	3NA3820-6	3NE8020-1	3RT2027	3RT2037	3RT2026	3RT2027
3RW5215	3NA3822-6	3NE8021-1	3RT2027	3RT2037	3NA3822-6	3NE8021-1	3RT2036	3RT2037	3 T2027	3RT2037
3RW5216	3NA3824-6	3NE8022-1	3RT2035	3 RT2037	3NA3824-6	3NE8022-1	3RT2037	3RT2038	3RT2035	3 TRT2037
3RW5217	3NA3824-6	3NE8024-1	3RT2035	3 RT2037	3NA3824-6	3NE8024-1	3RT2038	3RT2046	3RT2035	3RT2037
3RW5224	3NA3824-6	3NE8024-1	3RT2036	3RT2037	3NA3824-6	3NE8024-1	3RT2046	3RT2047	3RT2036	3RT2037
3RW5225	3NA3830-6	3NE8024-1	3RT2037	3RT2046	3NA3830-6	3NE8024-1	3RT2047	3RT1054	3RT2037	3RT2046
3RW5226	3NA3132-6	3NE8024-1	3RT2038	3RT2046	3NA3132-6	3NE8024-1	3RT1055	3RT1055	3RT2038	3RT2046
3RW5227	3NA3136-6	3NE4124	3RT2046	3RT2047	3NA3136-6	3NE4124	3RT1056	3RT1056	3RT2046	3RT2047
3RW5234	3NA3244-6	3NE3332-OB	3RT1054	3RT1054	3NA3244-6	3NE3332-OB	3RT1064	3RT1064	3RT1054	3RT1054
3RW5235	3NA3244-6	3NE3334-OB	3RT1055	3RT1055	3NA3244-6	3NE3334-0B	3RT1065	3RT1065	3RT1055	3RT1055
3RW5236	3NA3365-6	3NE3335	3RT1056	3RT1064	3NA3365-6	3NE3335	3RT1066	3RT1075	3RT1056	3RT1064
3RW5243	$2 \times 3$ NA3354-6	3NE3333	3RT1064	3RT1064	$2 \times 3 N A 3354-6$	3NE3333	3RT1075	3RT1075	3RT1064	3RT1064
3RW5244	$2 \times 3 N A 3354-6$	3NE3336	3RT1065	3RT1065	$2 \times 3 N A 3354-6$	3NE3336	3RT1076	3RT1076	3RT1065	3RT1065
3RW5245	$2 \times 3$ A $3365-6$	3NE3336	3RT1075	3RT1075	$2 \times 3 N A 3365-6$	3NE3336	3TF68	3TF68	3RT1075	3RT1075
3RW5246	$2 \times 3$ AA3365-6	3NE3336	3RT1075	3RT1075	$2 \times 3$ A $3365-6$	3NE3336	3TF69	3TF69	3RT1075	3RT1075
3RW5247	$2 \times 3 N A 3365-6$	3NE3340-8	3RT1076	3RT1276	$2 \times 3 N A 3365-6$	3NE3340-8	3TF69	3TF69	3RT1076	3RT1276
3RW5248	$2 \times 3 N A 3365-6$	3NE3340-8	3TF68	3TF68	$2 \times 3 N A 3365-6$	3NE3340-8	--	--	3TF68	3TF68

Note:
The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

For CLASS 10 applications, as an alternative to the gG class full-range fuses for cable and line protection 3NA3 (F1),
3RV2 motor starter protectors or 3VA circuit breakers can also be used, possibly with reduced short-circuit breaking capacity (see page 6/62). In these cases, optional line contactors can be dispensed with.

# Switching devices－Soft starters and solid－state switching devices <br> SIRIUS 3RW soft starters <br> General Performance soft starters 

## 3RW52 soft starters＞Inline circuit IE3／IE4 ready

## Selection and ordering data

For normal starting（CLASS 10A）


Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

## Product function

Analog output
Thermistor motor protection
Control supply voltage
24 V AC／DC
110 ．．． 250 V AC


Note：
For the constraints for the motor outputs specified here，
see page 6／8．

At $40{ }^{\circ} \mathrm{C}$				At $50{ }^{\circ} \mathrm{C}$					SD ${ }^{1)}$	Article No．	Price per PU		PS＊	PG
Opera－	Operating power for three－phase motors			Opera－ tional current	Rating［hp］for three－phase motors									
current	At 230 V	At 400 V	At 500 V		At 200／208 V	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 575 / 600 \mathrm{~V} \end{aligned}$						
A	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage 200 ．．． 480 V														
113	30	55	－－	101	30	30	75	－－	5	3RW5234－पロC口4		1	1 unit	42 S
143	37	75	－－	128	40	40	100	－－	5	3RW5235－ロロCD4		1	1 unit	42 S
171	45	90	－－	153	50	50	100	－－	5	3RW5236－पロC $\square 4$		1	1 unit	42 S
210	55	110	－－	186	60	60	150	－－	5	3RW5243－पロC口4		1	1 unit	42S
250	75	132	－－	220	60	75	150	－－	5	3RW5244－पロCD4		1	1 unit	42 S
315	90	160	－－	279	75	100	200	－－	5	3RW5245－पロC $\square 4$		1	1 unit	42 S
370	110	200	－－	328	100	125	250	－－	5	3RW5246－पロC $\square 4$		1	1 unit	42 S
470	132	250	－－	416	150	150	350	－－	5	3RW5247－ロロC $\square 4$		1	1 unit	42 S
570	160	315	－－	504	150	200	400	－－	5	3RW5248－पロCD4		1	1 unit	42S

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

## Product function

Analog output
Thermistor motor protection


Control supply
24 V AC／DC
110 ．．． 250 V AC
${ }^{1)}$ 3RW52 soft starter with screw terminals for operational voltage up to 480 V ：Note： Standard delivery time SD＝ 1 day（d）．

For the constraints for the motor outputs specified here， see page 6／8．

For normal starting（CLASS 10A）


Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

## Product function

Analog output
Thermistor motor protection


24 V AC／DC
24 V AC／DC
110 ．．． 250 V AC

1）3RW52 soft starter with screw terminals for operational voltage up to 600 V ： Standard delivery time SD＝ 2 days（d）．

Note：
For the constraints for the motor outputs specified here， see page 6／8．

At $40{ }^{\circ} \mathrm{C}$				At $50{ }^{\circ} \mathrm{C}$					SD ${ }^{1)}$	Article No．	Price per PU	PU   （UNIT，   SET，M）	PS＊	PG
Opera－	Operating power for three－phase motors			Opera－	Rating［hp］	for three－ph	hase motors							
current	$\begin{aligned} & \text { At } \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 400 \mathrm{~V} \end{aligned}$	At 500 V	current	At 200/208 V	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	At $460 / 480 \mathrm{~V}$	$\begin{aligned} & \text { At } \\ & 575 / 600 \mathrm{~V} \end{aligned}$						
A	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage $200 \ldots 600$ V														
113	30	55	75	101	30	30	75	100	5	3RW5234－$\square \square \square \square 5$		1	1 unit	42S
143	37	75	90	128	40	40	100	125	5	3RW5235－$\square \square C \square 5$		1	1 unit	42S
171	45	90	110	153	50	50	100	150	5	3RW5236－$\square \square \mathrm{C} \square 5$		1	1 unit	42S
210	55	110	132	186	60	60	150	150	5	3RW5243－■ロC口5		1	1 unit	42S
250	75	132	160	220	60	75	150	200	5	3RW5244－$\square \square C \square 5$		1	1 unit	42S
315	90	160	200	279	75	100	200	250	5	3RW5245－$\square \square \square \square 5$		1	1 unit	42S
370	110	200	250	328	100	125	250	300	5	3RW5246－■口C口5		1	1 unit	42S
470	132	250	315	416	150	150	350	450	5	3RW5247－$\square \square \square \square 5$		1	1 unit	42 S
570	160	315	355	504	150	200	400	500	5	3RW5248－$\square \square C \square 5$		1	1 unit	42S

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

## Product function

Analog output
Thermistor motor protection

## Control supply voltage

24 V AC／DC
110 ．．． 250 V AC


[^57]
## Note：

For the constraints for the motor outputs specified here， see page 6／8．

# Switching devices－Soft starters and solid－state switching devices <br> SIRIUS 3RW soft starters <br> General Performance soft starters 

## 3RW52 soft starters＞Inside－delta circuit IE3／IE4 ready

## Selection and ordering data

For normal starting（CLASS 10A）



3RW523．


22.5	5.5	11	－－	19.9	5	5	10	－－	5	3RW5213－ロロC $\square 4$	1	1 unit	42 S
31.5	7.5	15	－－	28	7.5	7.5	20	－－	5	3RW5214－ロロC口4	1	1 unit	42 S
43.3	11	18.5	－－	39	10	10	25	－－	5	3RW5215－ロロC $\square 4$	1	1 unit	42 S
55.4	15	22	－－	49	15	15	30	－－	5	3RW5216－पロC口4	1	1 unit	42 S
65.8	18.5	30	－－	58	15	20	40	－－	5	3RW5217－ロロCロ4	1	1 unit	42 S
81.4	22	45	－－	72	20	25	50	－－	5	3RW5224－ロロC $\square 4$	1	1 unit	42 S
109	30	55	－－	96	30	30	75	－－	5	3RW5225－पロC口4	1	1 unit	42 S
133	37	75	－－	118	30	40	75	－－	5	3RW5226－ロロC $\square 4$	1	1 unit	42 S
161	45	90	－－	143	40	50	100	－－	5	3RW5227－पロC口4	1	1 unit	42 S

Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals
Product function
Analog output
Thermistor motor protection

## Control supply voltage

24 V AC／DC


1） 3 RW5 5 soft starter with screw terminals for operational voltage up to 480 V ：
Standard delivery time $\mathrm{SD}=1$ day（d）．
Note：
For the constraints for the motor outputs specified here， see page 6／8．

At $40^{\circ} \mathrm{C}$ for inside－delta circuit				At $50{ }^{\circ} \mathrm{C}$ for inside－delta circuit					$S D^{1)}$	Article No．	Price per PU		PS＊	PG
Opera－ tional	Operating power for three－phase motors			Opera－ tional	Rating［hp］	for three－p	hase motors							
current	$\begin{aligned} & \mathrm{At} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 400 \mathrm{~V} \end{aligned}$	At 500 V	current	$\begin{aligned} & \text { At } \\ & \text { 200/208 V } \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 575 / 600 \mathrm{~V} \end{aligned}$						
A	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage $200 \ldots 480 \mathrm{~V}$														
196	55	110	－－	175	50	60	125	－－	5	3RW5234－पロC口4		1	1 unit	42 S
248	75	132	－－	222	75	75	150	－－	5	3RW5235－ロロCロ4		1	1 unit	42 S
296	90	160	－－	265	75	100	200	－－	5	3RW5236－ロロC $\square 4$		1	1 unit	42 S
364	110	200	－－	322	100	125	250	－－	5	3RW5243－पロC口4		1	1 unit	42S
433	132	250	－－	381	125	150	300	－－	5	3RW5244－ロロCロ4		1	1 unit	42 S
546	160	315	－－	483	150	200	400	－－	5	3RW5245－ロロC $\square 4$		1	1 unit	42 S
641	200	355	－－	568	200	200	450	－－	5	3RW5246－पロC口4		1	1 unit	42 S
814	250	400	－－	721	250	250	600	－－	5	3RW5247－ロロC口4		1	1 unit	42S
987	315	560	－－	873	300	350	750	－－	5	3RW5248－ロロCD4		1	1 unit	42 S

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

## Product function

Analog output
Thermistor motor protection
Control supply voltage
24 V AC／DC
110 ．．． 250 V AC

${ }^{1)} 3 R W 52$ soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

Note：
For the constraints for the motor outputs specified here， see page 6／8．


Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

## Product function

Analog output
Thermistor motor protection
24 V AC／DC
24 V AC／DC
110 ．．． 250 V AC

${ }^{1)} 3 R W 52$ soft starter with screw terminals for operational voltage up to 600 V ： Standard delivery time SD＝ 2 days（d）．

Note：
For the constraints for the motor outputs specified here， see page 6／8．

At $40{ }^{\circ} \mathrm{C}$ for inside－delta circuit				At $50{ }^{\circ} \mathrm{C}$ for inside－delta circuit					SD ${ }^{1)}$	Article No．	Price per PU	PU   （UNIT，   SET，M）	PS＊	PG
Opera－ tional current	Operat three－p   At   230 V	ing pow hase mo At 400 V	er for   otors   At   500 V	Opera－ tional current	Rating［hp］   At   200／208 V	for three－p   At   220／230 V	hase motors $\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 575 / 600 \mathrm{~V} \end{aligned}$						
A	kW	kW	kW	A	hp	hp	hp	hp	d					
Operational voltage $200 \ldots 600$ V														
196	55	110	132	175	50	60	125	150	5	3RW5234－$\square \square \square \square 5$		1	1 unit	42S
248	75	132	160	222	75	75	150	200	5	3RW5235－$\square \square C \square 5$		1	1 unit	42S
296	90	160	200	265	75	100	200	250	5	3RW5236－$\square \square \mathrm{C} \square 5$		1	1 unit	42S
364	110	200	250	322	100	125	250	300	5	3RW5243－■ロC口5		1	1 unit	42S
433	132	250	315	381	125	150	300	350	5	3RW5244－$\square \square C \square 5$		1	1 unit	42S
546	160	315	355	483	150	200	400	500	5	3RW5245－$\square \square \square \square 5$		1	1 unit	42S
641	200	355	450	568	200	200	450	600	5	3RW5246－■口C口5		1	1 unit	42S
814	250	400	500	721	250	250	600	800	5	3RW5247－$\square \square \square \square 5$		1	1 unit	42 S
987	315	560	630	873	300	350	750	950	5	3RW5248－$\square \square C \square 5$		1	1 unit	42S

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals
Product function
Analog output
Thermistor motor protection

## Control supply voltage

24 V AC／DC
110 ．．． 250 V AC


[^58]
## Note：

For the constraints for the motor outputs specified here， see page 6／8．

## Switching devices - Soft starters and solid-state switching devices

SIRIUS 3RW soft starters
General Performance soft starters
3RW52 soft starters > Accessories

## Selection and ordering data

Product designation	Manufacturer's Article No. of the soft starter	Type of product	Application	SD	Article No.	Price per PU	(UNIT, SET, M)	PS*

Fan covers
d

3RW5983-0FC00

Terminal covers							
	Terminal	$\begin{array}{ll}\text { 3RW522 (2x), } & -- \\ \text { cover }\end{array}$	3RW523 (2x)		--		



3RW5983-0TC20


3RW5984-0TC20
Enclosure components


3RW5950-0GL30


3RW5950-0GL40 Communication modules


Communica- 3RW52
tion module

PROFINET Standard	-	3RW5980-0CS00	1	1 unit	42 S
PROFIBUS --	-	3RW5980-0CP00	1	1 unit	42 S
EtherNet/IP	-	3RW5980-0CE00	1	1 unit	42 S
Modbus RTU --	-	3RW5980-0CR00	1	1 unit	42 S
Modbus TCP --	-	3RW5980-0CT00	1	1 unit	42 S

3RW5980-0CS00


3RW5980-0CR00

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters General Performance soft starters

3RW52 soft starters > Accessories


1) PC labeling systems for individual inscription of unit labeling plates are available from: murrplastik Systemtechnik GmbH
(see page 16/16).

## Switching devices - Soft starters and solid-state switching devices <br> SIRIUS 3RW soft starters <br> Basic Performance soft starters

## 3RW50 soft starters > General data

## Overview

## More information

Homepage, see www.siemens.com/sirius-soft-starter
Industry Mall, see www.siemens.com/product?3RW50
TIA Selection Tool Cloud (TST Cloud), see
https://www. siemens.com/tstcloud/?node=3rw50
Industry Online Support (SIOS) topic page, see
https://support.industry.siemens.com/cs/ww/en/view/109747404


SIRIUS 3RW50 soft starters device family


[^59]Benefits


Product characteristics / function	Performance features / benefits
Hybrid switching technology and 2-phase motor control	Minimum power loss and optimized motor control by avoiding DC components
Small and compact design	Space-saving, clearly arranged control panel layout
TIA integration - communication modules and HMI modules optional	Efficient configuration and maximum flexibility in automation engineering
Sotor overload and intrinsic device protection without additional wiring	Adjustable trip classes, integrated diagnostic functions
Parameterization using potentiometers	Reduced mechanical loading and optimum pump stop
Wide range for control supply and main voltage	Simple and fast commissioning
Certified according to ATEX/IECEx directive	Suitable for the starting of explosion-proof motors with "increased safety"
type of protection	

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> Basic Performance soft starters

## 3RW50 soft starters > General data

## Technical specifications

## More information

Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/25252/td
Equipment Manual, see
https://support.industry.siemens.com/cs/ww/en/view/109753750

FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/25252/faq
Simulation Tool for Soft Starters (STS), see page 6/9 or
https://support.industry.siemens.com/cs/ww/en/view/101494917


Ambient conditions

## Ambient temperature

- During operation ${ }^{2)} \quad{ }^{\circ} \mathrm{C}-25 \ldots+60$
- During storage and transport ${ }^{\circ} \mathrm{C} \quad-40 \ldots+80$

Environmental category according to IEC 60721

- During operation

3 K6 (no ice formation, only occasional condensation), 3C3 (no salt mist),
3S2 (sand must not get into the devices), 3M6

- During storage
- During transport

1) Derating from 1000 m , see characteristic curve on page $6 / 8$.

1K6 (only occasional condensation), 1C2 (no salt mist),
1S2 (sand must not get into the devices), 1M4
$2 \mathrm{~K} 2,2 \mathrm{C} 1,2 \mathrm{~S} 1,2 \mathrm{M} 2$ (max. height of fall 0.3 m )
2) Note derating above $40^{\circ} \mathrm{C}$

Type		3RW50..-..B0.	3RW50..-..B1.
Control circuit/control			
Control supply voltage			
- At AC/DC, rated value	V	24/24	----
- At AC	V	--	110 ... 250
- Relative negative tolerance/relative positive tolerance with AC	\%	-20/20	-15/10
- Relative negative tolerance/relative positive tolerance with DC	\%	-20/20	----
Frequency of the control supply voltage	Hz	$50 \ldots 60$	
- Relative negative tolerance/relative positive tolerance	\%	-10/10	
Type of overvoltage protection		Varistors	
Type of short-circuit protection for control circuit ${ }^{1)}$		Fuse 4 A gG MCB C1 ${ }^{\left(I_{\mathrm{Cu}}\right.}$	$\begin{aligned} & \text { response }\left(\boldsymbol{I}_{\mathrm{Cu}}=\right. \\ & 0 \mathrm{~A}) \end{aligned}$

1) Not included in scope of supply

Type	3RW50..-..B.4	3RW50..-..B.5	
Power electronics			
Operational voltage, rated value	$200 \ldots 480$	$200 \ldots 600$	
- Relative negative tolerance/relative positive tolerance	$\%$	$-15 / 10$	
Operating frequency, rated value	Hz	$50 \ldots 60$	
- Relative negative tolerance/relative positive tolerance	$\%$	$-10 / 10$	
Minimum load [\% of $\left.\boldsymbol{I}_{\boldsymbol{M}}\right]^{1)}$	$\%$	15	
Maximum cable length between soft starter and motor	m	800	
1) Relative to the smallest adjustable $\boldsymbol{I}$			

[^60]| Type |  | 3RW5055 | 3RW5056 |
| :--- | :--- | :--- | :--- |
| Rated operational current $I_{\mathrm{e}}$ | A | 143 | 171 |
| Power electronics |  |  |  |
| Load rating with rated operational current $I_{\mathrm{e}}$ <br> IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, | A | $143 / 128 / 118$ | $171 / 153 / 141$ |
| AC-53a |  |  |  |

## Permissible rated motor current and starts/h

 Normal starting (CLASS 10A)Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$
A 143/128/118 171/153/141

ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 5 s

Start-up time 10 s

- $350 \% I_{M}$

Start-up time 5 s

Normal starting (CLASS 10E)
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 10 s

Start-up time 20 s

- $350 \% I_{\mathrm{M}}$
- Start-up time 10 s

Heavy starting (CLASS 20E)

Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$	A	$108 / 98 / 88$	$135 / 123 / 111$

ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 20 s 1/h 10 10
- Start-up time 40 s
- $350 \% I_{M}$
- Start-up time 20 s
- Start-up time 40 s

4

Adjustable rated motor current $I_{M}$

- Minimum/maximum
A

68/143
81/117


## Permissible rated motor current and starts/h

Normal starting (CLASS 10A)
Rated motor current $I_{M}, T_{u}=40 / 50 / 60$${ }^{\circ} \mathrm{C} \quad$ A $\quad 210 / 186 / 170 \quad 250 / 220 / 200 \quad 315 / 279 / 255 \quad 370 / 328 / 300 \quad 470 / 416 / 380 \quad 570 / 504 / 460$

ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$

Start-up time 5 s
Start-up time 10 s

- $350 \% I_{M}$
- Start-up time 5 s
- Start-up time $10 \mathrm{~s} \quad 1 / \mathrm{h}$

Normal starting (CLASS 10E)
$\begin{array}{llllllll}\text { Rated motor current } I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C} & \mathrm{A} \quad 210 / 186 / 170 & 250 / 220 / 200 & 315 / 279 / 255 & 370 / 328 / 300 & 470 / 416 / 380 & 570 / 504 / 460\end{array}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$

Start-up time 10

- Start-up time 20 s
- $350 \% I_{M}$
- Start-up time 10 s


Start-up time 10 s	$1 / \mathrm{h}$	8	13	12	13	12	12
Start-up time 20 s	$1 / \mathrm{h}$	--	4	4	4	4	4

Heavy starting (CLASS 20E)
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 20 s
- Start-up time 40 s
- $350 \% I_{\mathrm{M}}$

Start-up time 20 s

- Start-up time 40 s

Adjustable rated motor current $I_{M}$

- Minimum/maximum


## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> Basic Performance soft starters

## 3RW50 soft starters > General data

## Motor feeders according to IEC with 3VA circuit breakers (without semiconductor protection)

Type of coordination "1", CLASS 10,
short-circuit breaking capacity $I_{\mathrm{q}}$ in kA, see table
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.

|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

Note:
The service factor and measurement inaccuracies, for example, have been taken into account for the selection of the specified circuit breakers; the specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller motor starter protectors/circuit breakers from the same series can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must match the connected threephase motor, the short-circuit and overload requirements of the application, and the line protection for the cables used.

## Motor feeders according to IEC with 3NA3 fuses

gG class full-range fuses for cable and line protection according to IEC 60269-2, without semiconductor protection

Type of coordination "1",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.

Soft starters	gG class fuse	Line contac	ptional)
	for systems up to 600 V	for systems up to 480 V	for systems up to 600 V
Q11	F1	Q21	Q21
Type	Type	Type	Type
$\begin{array}{lr} \hline \begin{array}{l} \text { Type of } \\ \text { coordination } \\ \text { "1" } \end{array} & \begin{array}{c} \text { ToC } \\ 1 \end{array} \\ \hline \end{array}$	Inline circuit		
3RW5055 3RW5056	$\begin{aligned} & \text { 3NA3244-6 } \\ & \text { 3NA3244-6 } \end{aligned}$	3RT1055 3RT1056	3RT1055 3RT1064
3RW5072	$2 \times 3$ A $3354-6$	3RT1064	3RT1064
3RW5073	$2 \times 3 N A 3354-6$	3RT1065	3RT1065
3RW5074	$2 \times 3 N A 3365-6$	3RT1075	3RT1075
3RW5075	$2 \times 3 N A 3365-6$	3RT1075	3RT1075
3RW5076	$2 \times 3 N A 3365-6$	3RT1076	3RT1076
3RW5077	$2 \times 3 N A 3365-6$	3TF68	3TF68

## Note:

The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> Basic Performance soft starters

## 3RW50 soft starters > General data

## Motor feeders according to IEC with 3NE1 SITOR fuses

gR class full-range fuses for semiconductor protection, cable and line protection

Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.



Note:
The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

## Motor feeders according to IEC with 3NE3 fuses

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders
with soft starters, see page 6/11.


Soft starters	gG class fuse	aR class fuse	Line contac	ptional)
	for systems up to 600 V	for systems up to 600 V	for systems up to 480 V	for systems up to 600 V
Q11	F1	F3	Q21	Q21
Type	Type	Type	Type	Type
Type of   coordination   co      "2"	Inline circuit			
3RW5055 3RW5056	$\begin{aligned} & \text { 3NA3244-6 } \\ & \text { 3NA3244-6 } \end{aligned}$	$\begin{aligned} & \text { 3NE3334-0B } \\ & \text { 3NE3335 } \end{aligned}$	$\begin{aligned} & \hline \text { 3RT1055 } \\ & \text { 3RT1056 } \end{aligned}$	$\begin{aligned} & \text { 3RT1055 } \\ & \text { 3RT1064 } \end{aligned}$
3RW5072	$2 \times 3$ NA3354-6	3NE3333	3RT1064	3RT1064
3RW5073	$2 \times 3$ NA3354-6	3NE3335	3RT1065	3RT1065
3RW5074	$2 \times 3$ NA3365-6	3NE3335	3RT1075	3RT1075
3RW5075	$2 \times 3$ NA3365-6	3NE3336	3RT1075	3RT1075
3RW5076	$2 \times 3$ NA3365-6	3NE3340-8	3RT1076	3RT1076
3RW5077	$2 \times 3 N A 3365-6$	3NE3340-8	3TF68	3TF68

## Note:

The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

For CLASS 10 applications, as an alternative to the gG class full-range fuses for cable and line protection 3NA3 (F1), 3VA circuit breakers can also be used, possibly with reduced short-circuit breaking capacity (see page 6/76). In these cases, optional line contactors can be dispensed with.

## Switching devices－Soft starters and solid－state switching devices <br> SIRIUS 3RW soft starters <br> Basic Performance soft starters

## 3RW50 soft starters＞Inline circuit IE3／IE4 ready

## Selection and ordering data

For normal starting（CLASS 10E）


At $40{ }^{\circ} \mathrm{C}$				At $50{ }^{\circ} \mathrm{C}$					Size	SD ${ }^{1)}$	Article No．	Price per PU	PU （UNIT， SET，M）	PS＊	PG
Opera－		ating p	W	Opera－ tional current	Rating［hp］for three－phase motors										
current	$\begin{aligned} & \text { mot } \\ & \text { At } \end{aligned}$ $230$	st   At   400			$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{At} \\ & 575 / 600 \mathrm{~V} \end{aligned}$							
A	kW	kW	kW	A	hp	hp	hp	hp		d					
Operational voltage 200 ．．． 480 V															
143	37	75	－－	128	40	40	100	－－	S6	5	3RW5055－ロロB $\square 4$		1	1 unit	42S
171	45	90	－－	153	50	50	100	－－	S6	5	3RW5056－पロB $\square 4$		1	1 unit	42S
210	55	110	－－	186	60	60	150	－－	S12	5	3RW5072－ロロB $\square 4$		1	1 unit	42 S
250	75	132	－－	220	60	75	150	－－	S12	5	3RW5073－प口B $\square 4$		1	1 unit	42 S
315	90	160	－－	279	75	100	200	－－	S12	5	3RW5074－पロB $\square 4$		1	1 unit	42 S
370	110	200	－－	328	100	125	250	－－	S12	5	3RW5075－पロB $\square 4$		1	1 unit	42S
470	132	250	－－	416	150	150	350	－－	S12	5	3RW5076－ロロB $\square 4$		1	1 unit	42 S
570	160	315	－－	504	150	200	400	－－	S12	5	3RW5077－■口B $\square 4$		1	1 unit	42 S

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals


Product function
Analog output
Thermistor motor protection
Control supply voltage
24 V AC／DC
110 ．．． 250 V AC

Note：
For the constraints for the motor outputs specified here， see page 6／8．

At $40{ }^{\circ} \mathrm{C}$				At $50{ }^{\circ} \mathrm{C}$					Size	$S D^{1)}$	Article No．	Price per PU		PS＊	PG
Opera－			wer	Opera－ tional current	Rating［hp］for three－phase motors										
	At $230 \mathrm{~V}$				$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 575 / 600 \mathrm{~V} \end{aligned}$							
A	kW	kW	kW	A	hp	hp	hp	hp		d					
Operational voltage $200 \ldots 600 \mathrm{~V}$															
143	37	75	90	128	40	40	100	125	S6	5	3RW5055－पロB $\square 5$		1	1 unit	42S
171	45	90	110	153	50	50	100	150	S6	5	3RW5056－पロBロ5		1	1 unit	42S
210	55	110	132	186	60	60	150	150	S12	5	3RW5072－पロB $\square 5$		1	1 unit	42 S
250	75	132	160	220	60	75	150	200	S12	5	3RW5073－पロBロ5		1	1 unit	42 S
315	90	160	200	279	75	100	200	250	S12	5	3RW5074－पロB $\square 5$		1	1 unit	42 S
370	110	200	250	328	100	125	250	300	S12	5	3RW5075－पロB $\square 5$		1	1 unit	42 S
470	132	250	315	416	150	150	350	450	S12	2	3RW5076－पロBロ5		1	1 unit	42 S
570	160	315	355	504	150	200	400	500	S12	5	3RW5077－■口B口5		1	1 unit	42 S

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

## Product function

Analog output
Thermistor motor protection

## Control supply voltage

24 V AC／DC


1） 3 RW50 soft starter with screw terminals for operational voltage up to 600 V ： Standard delivery time SD＝ 2 days（d）．

Note：
For the constraints for the motor outputs specified here， see page 6／8．

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters Basic Performance soft starters

3RW50 soft starters > Accessories
Selection and ordering data

	Product designation	Manufacturer's Article No. of the soft starter	Type of product	Application	SD	Article No.	Price per PU	(UNIT,   SET, M)	PS*	PG
					d					
Fan covers										
	Fan cover	3RW50 (1x)	--	--	-	3RW5985-0FC00		1	1 unit	42 S
3RW5985-0FC00										
Box terminal block										
	Box terminal block for round and ribbon	3RW505 (2x)	Up to $70 \mathrm{~mm}^{2}$ Up to $120 \mathrm{~mm}^{2}$		$\stackrel{\rightharpoonup}{\nabla}$	3RT1955-4G 3RT1956-4G		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 41 B \\ & 41 B \end{aligned}$
3RT1956-4G	cables	3RW507 (2x)	Up to $240 \mathrm{~mm}^{2}$ (with auxiliary conductor connection)		-	3RT1966-4G		1	1 unit	41B
Terminal covers										
	Covers for	3RW505 (2x)	--	--	-	3RT1956-4EA2		1	1 unit	41B
	box terminals	3RW507 (2x)	--	--	5	3RT1966-4EA2		1	1 unit	41B
	Covers for	3RW505 (2x)	--	--	$\checkmark$	3RT1956-4EA1		1	1 unit	41B
	cable lugs and busbar connections	3RW507 (2x)	--	--	5	3RT1966-4EA1		1	1 unit	41B
3RT1956-4EA1										
Communication modules										
	Communication module	3RW50	PROFINET Standard	--	-	3RW5980-0CS00		1	1 unit	42 S
			PROFIBUS		$\nabla$	3RW5980-0CP00		1	1 unit	42S
			EtherNet/IP		$\square$	3RW5980-0CE00		1	1 unit	42 S
			Modbus RTU		$\square$	3RW5980-0CR00		1	1 unit	42 S
			Modbus TCP		$\square$	3RW5980-0СT00		1	1 unit	42 S
	COM connecting cable	3RW50	0.3 m , round	--	-	3RW5900-0CC00		1	1 unit	42 S
3RW5900-0CC00	For mounting laterally on the device									

## Switching devices - Soft starters and solid-state switching devices

SIRIUS 3RW soft starters
Basic Performance soft starters
3RW50 soft starters > Accessories

Product designation	Manufacturer's Article No. of the soft starter	Type of product	Application	SD	Article No.	Price per PU		PS*	PG




3RW5980-0HS00


3RW5980-0HD00 Connecting cables


[^61]Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters Basic Performance soft starters

## Overview

## More information

Homepage, see www.siemens.com/sirius-soft-starter Industry Mall, see www.siemens.com/product?3RW40

TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=3rw40
Simulation Tool for Soft Starters (STS), see page 6/9 or
https://support.industry.siemens.com/cs/ww/en/view/101494917
The SIRIUS 3RW40 Basic Performance soft starters are suitable for soft starting and stopping of three-phase asynchronous motors.
Thanks to 2-phase control, not only is the current kept at minimum values in all three phases throughout the entire starting time, but disturbing direct current components are also eliminated. This not only enables the 2-phase starting of motors up to 55 kW (at 400 V ) but also avoids the current and torque peaks which occur e.g. with wye-delta starters.
The SIRIUS 3RW40 soft starters are suitable for the starting of explosion-proof motors with "increased safety" type of protection EEx e according to ATEX Directive 94/9/EC.

SIRIUS 3RW40 soft starter


SIRIUS 3RW40 Basic Performance soft starter with accessories (see page 6/93)

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters Basic Performance soft starters

3RW40 soft starters > General data

## Benefits



## Technical specifications



# Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> Basic Performance soft starters 

## 3RW40 soft starters > General data


${ }^{\text {1) }}$ Measurement at $60^{\circ} \mathrm{C}$ according to UL/CSA not required.
${ }^{\text {2) }}$ Current limiting on soft starter set to $300 \% I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50^{\circ} \mathrm{C}$. Maximum adjustable rated motor current $I_{M}$ dependent on CLASS setting
3) For intermittent duty S 4 with ON period $=30 \%, T_{\mathrm{u}}=40 / 50^{\circ} \mathrm{C}$, stand-alone installation vertical. The quoted switching frequencies do not apply for automatic mode. Factors for permissible switching frequency in other mounting position, direct mounting, side-by-side mounting, and implementation of optional auxiliary fan, see Equipment Manual in the chapter "Configuring".

## Motor feeders according to IEC with 3RV2 motor starter protectors (without semiconductor protection)

Type of coordination "1", CLASS 10,
short-circuit breaking capacity $I_{\mathrm{q}}$ in kA, see table
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11

Soft starters	Motor starter pro for 400 V systems		for 500 V systems	
Q11	Q1	$I_{\text {q }}$		$I_{\text {q }}$
Type	Type	kA	Type	kA
$\begin{array}{lr} \hline \begin{array}{l} \text { Type of } \\ \text { coordination } \end{array} & \begin{array}{c} \text { ToC } \\ 1 \end{array} \\ \hline \text { "1" } & \\ \hline \end{array}$	Inline circuit			
3RW4024   3RW4026   3RW4027   3RW4028	3RV2021-4AA10 3RV2021-4DA10 3RV2021-4EA10 3RV2021-4FA10	$\begin{aligned} & 55 \\ & 55 \\ & 55 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RV2021-4AA10 } \\ & \text { 3RV2021-4DA10 } \\ & \text { 3RV2021-4EA10 } \\ & \text { 3RV2021-4FA10 } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
3RW4036 3RW4037 3RW4038	3RV2031-4WA10 3RV2031-4JA10 3RV2031-4KA10	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	3RV2031-4WA10 3RV2031-4JA10 3RV2031-4KA10	$\begin{aligned} & 10 \\ & 5 \\ & 5 \end{aligned}$
3RW4046 3RW4047	3RV2041-4RA10 3RV2041-4MA10	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & \hline \text { 3RV2041-4YA10 } \\ & \text { 3RV2041-4MA10 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$

## Note:

The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller motor starter protectors/circuit breakers from the same series can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must match the connected three-phase motor, the short-circuit and overload requirements of the application, and the line protection for the cables used.

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> Basic Performance soft starters

## 3RW40 soft starters > General data

## Motor feeders according to IEC with 3NA3 fuses

gG class full-range fuses for cable and line protection according to IEC 60269-2, without semiconductor protection

Type of coordination "1",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11

|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

Note:
The specified short-circuit breaking capacities $I_{\mathrm{Q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must however, be suitable for the connected three-phase motor and the line protection for the cables used.

## Motor feeders according to IEC with 3NE1 SITOR fuses

gR class full-range fuses for semiconductor protection, cable
and line protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.

|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

## Note:

The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> Basic Performance soft starters

## 3RW40 soft starters > General data

## Motor feeders according to IEC with 3NE8 / 3NE4 / 3NE3 / 3NC fuses

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders
with soft starters, see page 6/11.



## Note:

The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must however, be suitable for the connected three-phase motor and the line protection for the cables used.
For CLASS 10 applications, as an alternative to the gG class full-range fuses for cable and line protection 3NA3 (F1), 3RV2 motor starter protectors can also be used, possibly with reduced short-circuit breaking capacity (see page 6/87). In these cases, optional line contactors can be dispensed with.

Selection and ordering data
For normal starting (CLASS 10)


3RW ambient temperature $40^{\circ} \mathrm{C}$   Rated values of three-phase motors				3RW ambient temperature $50^{\circ} \mathrm{C}$   Rated values of three-phase motors					Size	SD ${ }^{1)}$	Article No.	Price per PU		PS*	PG
Operational current $I_{\text {e }}$	Rating at operational voltage $U_{\mathrm{e}}$			Operational current $I_{\mathrm{e}}$	Rating at operational voltage $U_{e}$										
	230 V	400 V	500 V		200 V	230 V	460 V	575 V							
A	kW	kW	kW	A	hp	hp	hp	hp		d					
Rated operational voltage $U_{\mathrm{e}} 200 . .480 \mathrm{~V}$															
12.5	3	5.5	--	11	3	3	7.5	--	S0	-	3RW4024-■BB $\square 4$		1	1 unit	42G
25	5.5	11	--	23	5	5	15	--	S0	$\checkmark$	3RW4026-■BB $\square 4$		1	1 unit	42G
32	7.5	15	--	29	7.5	7.5	20	--	S0	2	3RW4027-■BB $\square 4$		1	1 unit	42G
38	11	18.5	--	34	10	10	25	--	S0	-	3RW4028-■BB $\square 4$		1	1 unit	42G
45	11	22	--	42	10	15	30	--	S2	-	3RW4036-■BB $\square 4$		1	1 unit	42G
63	18.5	30	--	58	15	20	40	--	S2	-	3RW4037-■BB $\square 4$		1	1 unit	42G
72	22	37	--	62	20	20	40	--	S2	$\checkmark$	3RW4038-■BB $\square 4$		1	1 unit	42G
80	22	45	--	73	20	25	50	--	S3	-	3RW4046-■BB $\square 4$		1	1 unit	42G
106	30	55	--	98	30	30	75	--	S3	-	3RW4047-■BB $\square 4$		1	1 unit	42G
Rated operational voltage $U_{e} 400 \ldots 600 \mathrm{~V}$															
12.5	--	5.5	7.5	11	--	--	7.5	10	S0	5	3RW4024-■BB $\square 5$		1	1 unit	42G
25	--	11	15	23	--	--	15	20	S0	5	3RW4026-■BB $\square 5$		1	1 unit	42G
32	--	15	18.5	29	--	--	20	25	S0	5	3RW4027-■BB $\square 5$		1	1 unit	42G
38	--	18.5	22	34	--	--	25	30	S0	5	3RW4028-■BB $\square 5$		1	1 unit	42G
45	--	22	30	42	--	--	30	40	S2	5	3RW4036-ロBB ${ }^{\text {a }}$		1	1 unit	42G
63	--	30	37	58	--	--	40	50	S2	5	3RW4037-■BB $\square 5$		1	1 unit	42G
72	--	37	45	62	--	--	40	60	S2	5	3RW4038-■BB $\square 5$		1	1 unit	42G
80	--	45	55	73	--	--	50	60	S3	5	3RW4046-■BB $\square 5$		1	1 unit	42G
106	--	55	75	98	--	--	75	75	S3	5	3RW4047-■BB $\square 5$		1	1 unit	42G

## Article No. supplement for connection types

- Screw terminals
- Spring-loaded terminals ${ }^{2}$


## Control supply voltage

- 24 V AC/DC
- 110 ... 230 V AC/DC

1) Soft starter $U_{e} 200$ to 480 V with screw terminals: Standard delivery time SD = 1 day (d).
2) Main connection from size S2: screw terminals.

Note:
For the constraints for the motor outputs specified here,
see page 6/8.

## Switching devices－Soft starters and solid－state switching devices <br> SIRIUS 3RW soft starters <br> Basic Performance soft starters

3RW40 soft starters＞Inline circuit IE3／IE4 ready

## For normal starting（CLASS 10）



3RW402．


3RW403．


3RW404．

3RW ambient temperature 40				3 RW ambient temperature $50{ }^{\circ} \mathrm{C}$					Size	SD ${ }^{1)}$	Article No．	Price per PU	SET，M）	PS＊	PG
Rated values of three－phase motors				Rated values of three－phase motors											
Opera－ tional current $I_{\mathrm{e}}$	Rating at operational voltage $U_{e}$			Opera－ tional current $I_{\mathrm{e}}$	Rating opera	onal vol	age $U_{e}$								
	230 V	400 V	500 V		200 V	230 V	460 V	575 V							
A	kW	kW	kW	A	hp	hp	hp	hp		d					


Rated operational voltage $U_{e} 200 \ldots 480$ V， with thermistor motor protection，   rated control supply voltage $U_{s} 24 \mathrm{~V}$ AC／DC														
12.5	3	5.5	－－	11	3	3	7.5	－－	So	－	3RW4024－ロTB04	1	1 unit	42G
25	5.5	11	－－	23	5	5	15	－－	SO	－	3RW4026－口TB04	1	1 unit	42G
32	7.5	15	－－	29	7.5	7.5	20	－－	SO	5	3RW4027－口TB04	1	1 unit	42G
38	11	18.5	－－	34	10	10	25	－－	S0	$\checkmark$	3RW4028－■TB04	1	1 unit	42G
45	11	22	－－	42	10	15	30	－－	S2	－	3RW4036－口TB04	1	1 unit	42G
63	18.5	30	－－	58	15	20	40	－－	S2	$\checkmark$	3RW4037－口TB04	1	1 unit	42G
72	22	37	－－	62	20	20	40	－－	S2	－	3RW4038－口TB04	1	1 unit	42G
80	22	45	－－	73	20	25	50	－－	S3	－	3RW4046－口TB04	1	1 unit	42G
106	30	55	－－	98	30	30	75	－－	S3	$\checkmark$	3RW4047－■TB04	1	1 unit	42G


Rated operational voltage $U_{e} 400 \ldots 600 \mathrm{~V}$ ， with thermistor motor protection， rated control supply voltage $U_{\mathrm{s}} 24 \mathrm{~V}$ AC／DC														
12.5	－－	5.5	7.5	11	－－	－－	7.5	10	S0	5	3RW4024－पTB05	1	1 unit	42G
25	－－	11	15	23	－－	－－	15	20	S0	5	3RW4026－口TB05	1	1 unit	42G
32	－－	15	18.5	29	－－	－－	20	25	S0	5	3RW4027－口TB05	1	1 unit	42G
38	－－	18.5	22	34	－－	－－	25	30	S0	5	3RW4028－口TB05	1	1 unit	42G
45	－－	22	30	42	－－	－－	30	40	S2	5	3RW4036－口TB05	1	1 unit	42G
63	－－	30	37	58	－－	－－	40	50	S2	5	3RW4037－口TB05	1	1 unit	42G
72	－－	37	45	62	－－	－－	40	60	S2	5	3RW4038－■TB05	1	1 unit	42G
80	－－	45	55	73	－－	－－	50	60	S3	5	3RW4046－口TB05	1	1 unit	42G
106	－－	55	75	98	－－	－－	75	75	S3	5	3RW4047－■TB05	1	1 unit	42G

## Article No．supplement for connection types

－Screw terminals
－Spring－loaded terminals ${ }^{2)}$
1）Soft starter $U_{e} 200$ to 480 V with screw terminals： Standard delivery time SD＝ 1 day（d）．
${ }^{2)}$ Main connection from size S2：screw terminals．
Note：
For the constraints for the motor outputs specified here，
see page 6／8．

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters Basic Performance soft starters

## Selection and ordering data




## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> Basic Performance soft starters

3RW40 soft starters > Accessories

	For motor starter protectors	For soft starters	Version	SD	Article No.	Price per PU	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*	PG
	Size	Size		d					
Standard mounting rail adapters									
	S2	S2	For mechanical fixing of starter protector and soft for snapping onto standa mounting rail or for screw   Single-unit packaging	2	3RA2932-1CA00		1	1 unit	41B
	For soft starters Type	Size		SD	Article No.	Price per PU	PU (UNIT, SET, M)	PS*	PG
				d					
Fans (to increase switching frequency and for device mounting in positions different to the standard position)									
3RW49..-8VB00	3RW402.   3RW403.,   3RW404.	$\begin{aligned} & \text { S0 } \\ & \text { S2, S3 } \end{aligned}$		$\stackrel{\rightharpoonup}{\square}$	3RW4928-8VB00 3RW4947-8VB00		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit   1 unit	$\begin{aligned} & 42 \mathrm{G} \\ & 42 \mathrm{G} \end{aligned}$
	For soft starters Type	Size	Motor starter protectors Size	SD	Article No.	Price per PU	PU (UNIT, SET, M)	PS*	PG
d									
Link modules to motor starter protectors ${ }^{1}$ )									
3RA2921-1BA00	- Screw terminals				Screw terminals	(1)			
	3RW402.	S0	S00/S0	-	3RA2921-1BA00		1	1 unit	41B
	3RW4036	S2	S2	$\checkmark$	3RA2931-1AA00		1	1 unit	41B
	3RW404.		S3	-	3RA1941-1AA00		1	1 unit	41B
	- Spring-loaded terminals				Spring-loaded terminals				
	3RW402.	S0	S0	2	3RA2921-2GA00		1	1 unit	41B

1) Can be used in size SO up to maximum 32 A

Can be used in size S2 up to maximum 65 A in combination with
3RA2932-1CA00 standard mounting rail adapter (specially for soft starters).
Can be used in size S3 only with mounting plate.

Version	SD	Article No.	Price $P$ PU (UNIT,   per PU   SET, M $)$	PS*

Tools for opening spring-loaded terminals in sizes S00 and S0


Screwdrivers
For all SIRIUS devices with spring-loaded terminals
Length approx. $200 \mathrm{~mm}, 3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$,
titanium gray/black, partially insulated
3RA2908-1A
Blank labels

Unit labeling plates ${ }^{1)}$
For SIRIUS devices
$20 \mathrm{~mm} \times 7 \mathrm{~mm}$, titanium gray
of unit labeling murrplastik Systemtechnik GmbH
(see page 16/16)

	Spring-loaded terminals				
3RA2908-1A					

# Switching devices - Soft starters and solid-state switching devices 

 SIRIUS 3RW soft starters Basic Performance soft starters
## Overview

## More information

Homepage, see www.siemens.com/sirius-soft-starter Industry Mall, see www.siemens.com/product?3RW30

TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=3rw30
Simulation Tool for Soft Starters (STS), see page 6/9 or
https://support.industry.siemens.com/cs/ww/en/view/101494917
The SIRIUS 3RW30 Basic Performance soft starters are suitable for soft starting of three-phase asynchronous motors.

Thanks to 2-phase control, not only is the current kept at minimum values in all three phases throughout
the entire starting time, but disturbing direct current components are also eliminated. This not only enables the 2-phase starting of motors up to 55 kW (at 400 V ) but also avoids the current and torque peaks which occur e.g. with wye-delta starters.

SIRIUS 3RW30 soft starter


SIRIUS 3RW30 Basic Performance soft starter with accessories (see page 6/104)

# Switching devices - Soft starters and solid-state switching devices <br> SIRIUS 3RW soft starters <br> Basic Performance soft starters 

## 3RW30 soft starters > General data

## Benefits



3RW302.


3RW303.


3RW304.


3RW3003-2CB54
Product characteristics / function
Small and compact design
Parameterization using potentiometers
Integrated in the SIRIUS modular system
Hybrid switching technology and 2-phase motor control

Performance features / benefits

Space-saving, clearly arranged control panel layout

Simple and fast commissioning

Link modules to motor starter protectors

Minimum power loss and optimized motor control by avoiding DC components

## Technical specifications



[^62]in the chapter "Configuring"


1) Measurement at $60^{\circ} \mathrm{C}$ according to UL/CSA not required.
2) For intermittent duty S 4 with ON period $=30 \%, T_{\mathrm{u}}=40 / 50^{\circ} \mathrm{C}$, stand-alone
3) At $300 \% I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50^{\circ} \mathrm{C}$. installation vertical. The quoted switching frequencies do not apply for automatic mode

Type		3RW3026	3RW3027	3RW3028
Power electronics				
Load rating with rated operational current $I_{\mathrm{e}}$   - According to IEC and UL/CSA ${ }^{1)}$, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a	A	25.3/23/21	32.2/29/26	38/34/31
Power loss   - In operation after completed starting with uninterrupted rated operational current $\left(40^{\circ} \mathrm{C}\right)$ approx.   - During starting with $300 \% I_{M}\left(40^{\circ} \mathrm{C}\right)$	W W	$\begin{gathered} 8 \\ 188 \end{gathered}$	$\begin{gathered} 13 \\ 220 \end{gathered}$	$\begin{aligned} & 19 \\ & 256 \end{aligned}$
Permissible rated motor current and starts per hour   - For normal starting (CLASS 10) at $40 / 50^{\circ} \mathrm{C}$				
- Rated motor current $I_{\mathrm{M}}{ }^{2}$, start-up time 3 s   - Starts per hour ${ }^{3)}$	$\begin{aligned} & A \\ & 1 / h \end{aligned}$	$\begin{aligned} & 25 / 23 \\ & 23 / 23 \end{aligned}$	$\begin{aligned} & 32 / 29 \\ & 23 / 23 \end{aligned}$	$\begin{aligned} & 38 / 34 \\ & 19 / 19 \end{aligned}$
- Rated motor current $I_{\mathrm{M}}{ }^{2)}$, start-up time 4 s   - Starts per hour ${ }^{3}$ )	$\begin{aligned} & A \\ & 1 / h \end{aligned}$	$\begin{aligned} & 25 / 23 \\ & 15 / 15 \end{aligned}$	$\begin{aligned} & 32 / 29 \\ & 16 / 16 \end{aligned}$	$\begin{aligned} & 38 / 34 \\ & 12 / 12 \end{aligned}$

1) Measurement at $60^{\circ} \mathrm{C}$ according to UL/CSA not required. $\quad$ 3) For intermittent duty S 4 with ON period $=30 \%, T_{\mathrm{U}}=40 / 50{ }^{\circ} \mathrm{C}$, stand-alone
2) At $300 \% I_{M}, T_{\mathrm{u}}=40 / 50^{\circ} \mathrm{C}$. installation vertical. The quoted switching frequencies do not apply for automatic mode. Factors for permissible switching frequency with deviating mounting position, direct mounting, side-by-side mounting, see Equipment Manual in the chapter "Configuring".

Type		3RW3036	3RW3037	3RW3038	3RW3046	3RW3047
Power electronics						
Load rating with rated operational current $I_{\mathrm{e}}$   - According to IEC and UL/CSA ${ }^{1 \text { 1 }}$, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}, \mathrm{AC}-53 \mathrm{a}$	A	45/42/39	65/58/53	72/62.1/60	80/73/66	106/98/90
Power loss   - In operation after completed starting with uninterrupted rated operational current $\left(40^{\circ} \mathrm{C}\right)$ approx.   - During starting with $300 \% I_{\mathrm{M}}\left(40^{\circ} \mathrm{C}\right)$	W W	6 316	$\begin{aligned} & 12 \\ & 444 \end{aligned}$	$\begin{aligned} & 15 \\ & 500 \\ & \hline \end{aligned}$	$\begin{gathered} 12 \\ 576 \end{gathered}$	$\begin{array}{r} 21 \\ 768 \end{array}$
Permissible rated motor current and starts per hour   - For normal starting (CLASS 10) at $40 / 50^{\circ} \mathrm{C}$						
- Rated motor current $I_{M}{ }^{2}$, start-up time 3 s   - Starts per hour ${ }^{3)}$	$\begin{aligned} & \text { A } \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 45 / 42 \\ & 38 / 38 \end{aligned}$	$\begin{aligned} & 63 / 58 \\ & 23 / 23 \end{aligned}$	$\begin{aligned} & 72 / 62 \\ & \text { 22/22 } \end{aligned}$	$\begin{aligned} & 80 / 73 \\ & 22 / 22 \end{aligned}$	$\begin{gathered} 106 / 108 \\ 15 / 15 \end{gathered}$
- Rated motor current $I_{\mathrm{M}}{ }^{2}$, start-up time 4 s   - Starts per hour ${ }^{3}$ )	$\begin{aligned} & \text { A } \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 45 / 42 \\ & 26 / 26 \end{aligned}$	$\begin{aligned} & 63 / 58 \\ & 15 / 15 \end{aligned}$	$\begin{aligned} & 72 / 62 \\ & 15 / 15 \end{aligned}$	$\begin{aligned} & 80 / 73 \\ & 15 / 15 \end{aligned}$	$\begin{array}{r} 106 / 98 \\ 10 / 10 \end{array}$

1) Measurement at $60^{\circ} \mathrm{C}$ according to UL/CSA not required.
${ }^{\text {2) }}$ At $300 \% I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50^{\circ} \mathrm{C}$.
2) For intermittent duty S 4 with ON period $=30 \%, T_{\mathrm{u}}=40 / 50^{\circ} \mathrm{C}$, stand-alone installation vertical. The quoted switching frequencies do not apply for automatic mode.

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters Basic Performance soft starters

## 3RW30 soft starters > General data

Type		3RW3003-1CB54	3RW3003-2CB54
Mechanics and environment			
Mounting dimensions (W x H x D)   - Screw terminals   - Spring-loaded terminals	mm mm	$22.5 \times 100 \times 120$	$22.5 \times 101.6 \times 120$
Permissible ambient temperature			
During operation	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & -25 \ldots+60 ;(\text { derating from }+40) \\ & -40 \ldots+80 \end{aligned}$	
During storage	${ }^{\circ} \mathrm{C}$		
Weight	kg	0.207	0.188
Permissible mounting position			
Permissible installation altitude	m	5000 (Derating from 100	ic curve on page 6/9)
Degree of protection IP on the front acc. to IEC 60529		IP20	
Touch protection on the front acc. to IEC 60529		Finger-safe for vertical touching from the front	
Control electronics			
Rated values   Rated control supply voltage   - Tolerance	$\begin{aligned} & V \\ & \% \end{aligned}$	$\begin{aligned} & 24 \ldots 230 \mathrm{AC} / \mathrm{DC} \\ & \pm 10 \end{aligned}$	
Rated frequency at AC   - Tolerance	$\begin{aligned} & \mathrm{Hz} \\ & \% \end{aligned}$	$\begin{aligned} & 50 / 60 \\ & \pm 10 \end{aligned}$	
Power electronics			
Rated operational voltage Tolerance	$\begin{aligned} & \text { VAC } \\ & \% \end{aligned}$	$\begin{aligned} & 200 \ldots 400 \\ & \pm 10 \end{aligned}$	
Rated frequency Tolerance	$\begin{aligned} & \mathrm{Hz} \\ & \% \end{aligned}$	$\begin{aligned} & 50 / 60 \\ & \pm 10 \end{aligned}$	
Uninterrupted duty (\% of $I_{\mathrm{e}}$ )	\%	100	
Minimum load ${ }^{1)}$ (\% of $I_{\mathrm{e}}$ ); at $40^{\circ} \mathrm{C}$	\%	9	
Load rating with rated operational current $I_{\mathrm{e}}$   - According to IEC and UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, A AC-53a   - According to IEC and UL/CSA, side-by-side mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, A AC-53a		$100^{2)}$	
		$\begin{aligned} & 3 / 2.6 / 2.2 \\ & 2.6 / 2.2 / 1.8 \end{aligned}$	
Power loss   - In operation after completed starting with uninterrupted rated operational current $\left(40^{\circ} \mathrm{C}\right)$ approx.   - With utilization of maximum switching frequency	W W	6.5	
Permissible starts per hour (cannot be increased by using a fan)   - For intermittent duty $\mathrm{S} 4 \mathrm{~T}_{\mathrm{u}}=40^{\circ} \mathrm{C}$, stand-alone installation vertical   - ON period $=70 \%$ for $300 \% I_{\text {e }}$	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{s} \end{aligned}$	$\begin{aligned} & 1500 \\ & 0.2 \\ & \hline \end{aligned}$	
Dead time after uninterrupted duty with $I_{\mathrm{e}}$ before restart	s	0	

${ }^{1)}$ The rated motor current (specified on the motor's name plate) should at least amount to the specified percentage of the SIRIUS soft starter unit's rated operational current $I_{\mathrm{e}}$.
2) If this value is exceeded, problems with line capacities may arise, which can result in false firing

## Motor feeders according to IEC with 3RV2 motor starter protectors (without semiconductor protection)

Type of coordination "1", CLASS 10,
short-circuit breaking capacity $I_{\mathrm{q}}$ in kA, see table
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11


## Note:

The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller motor starter protectors/ circuit breakers from the same series can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must match the connected three-phase motor, the short-circuit and overload requirements of the application, and the line protection for the cables used.

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> Basic Performance soft starters

## 3RW30 soft starters > General data

## Motor feeders according to IEC with 3NA3 fuses

gG class full-range fuses for cable and line protection according to IEC 60269-2, without semiconductor protection

Type of coordination "1",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.


1) $I_{\mathrm{Q}}=50 \mathrm{kA}$ at 400 V .
2) 3 NA3805-1 (NHOO), 5SB261 (DIAZED), 5SE2201-6 (NEOZED).

Note:
The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

## Motor feeders according to IEC with 3NE1 SITOR fuses

gR class full-range fuses for semiconductor protection,
cable and line protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 6/11.


Soft starters	gR class fuse   for systems   up to 480 V	Line contactor (optional)	
		for systems up to 400 V	for systems up to 480 V
Q11	F'1	Q21	Q21
Type	Type	Type	Type
$\begin{array}{ll} \hline \text { Type of } & \text { Toc } \\ \text { coordination } & \\ \hline \text { "2" } \end{array}$	Inline circuit		
3RW3003 ${ }^{1 /}$	3NE1813-02)	3RT2015	3RT2015
3RW3013 3RW3014 3RW3016	3NE1813-0 3NE1813-0 3NE1813-0	3RT2015 3RT2015 3RT2016	$\begin{aligned} & \text { 3RT2015 } \\ & \text { 3RT2016 } \\ & \text { 3RT2017 } \end{aligned}$
3RW3017 3RW3018	3NE1813-0   3NE1814-0	$\begin{aligned} & \text { 3RT2018 } \\ & \text { 3RT2026 } \end{aligned}$	$\begin{aligned} & \text { 3RT2025 } \\ & \text { 3RT2026 } \end{aligned}$
3RW3026 3RW3027 3RW3028	3NE1803-0   3NE1020-2   3NE1020-2	$\begin{aligned} & \hline \text { 3RT2026 } \\ & \text { 3RT2027 } \\ & \text { 3RT2028 } \end{aligned}$	$\begin{aligned} & \text { 3RT2027 } \\ & \text { 3RT2028 } \\ & \text { 3RT2035 } \end{aligned}$
3RW3036 3RW3037 3RW3038	$\begin{aligned} & \text { 3NE1020-2 } \\ & \text { 3NE1820-0 } \\ & \text { 3NE1820-0 } \end{aligned}$	3RT2036 3RT2037 3RT2038	$\begin{aligned} & \text { 3RT2036 } \\ & \text { 3RT2037 } \\ & \text { 3RT2038 } \end{aligned}$
3RW3046 3RW3047	$\begin{aligned} & \text { 3NE1021-0 } \\ & \text { 3NE1022-0 } \end{aligned}$	3RT2045 3RT2047	$\begin{aligned} & \hline \text { 3RT2045 } \\ & \text { 3RT2047 } \end{aligned}$

1) $I_{\mathrm{q}}=50 \mathrm{kA}$ at 400 V .
${ }^{2)}$ No SITOR fuse required!
Alternatively: 3NA3803 (NHOO), 5SB221 (DIAZED), 5SE2206 (NEOZED).

## Note:

The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> Basic Performance soft starters

## 3RW30 soft starters > General data

## Motor feeders according to IEC with 3NE8 / 3NE4 / 3NE3 / 3NC fuses

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders
with soft starters, see page 6/11.


Soft starters	gG class fuse	aR class fuse			Cylindrical fuse	Line contac	tional)
	for systems up to 480 V	for systems up to 400 V	for systems up to 480 V				
Q11	F1	F3	F3	F3		Q21	Q21
Type							
Type of   coordination ToC   TO	Inline circuit						
3RW3003 ${ }^{\text {1) }}$	3NA3805 ${ }^{\text {2 }}$	--	--	3NE8015-1	3NC1010	3RT2015	3RT2015
3RW3013	3NA3803-6	--	3NE4101	3NE8015-1	3 NC2220	3RT2015	3RT2015
3RW3014	3NA3805-6	--	3NE4101	3NE8015-1	3NC2220	3RT2015	3RT2016
3RW3016	3NA3807-6	--	3NE4101	3NE8015-1	3NC2220	3 RT2016	3 RT2017
3RW3017 3RW3018	$\begin{aligned} & \text { 3NA3810-6 } \\ & \text { 3NA3814-6 } \end{aligned}$	--	$\begin{aligned} & \text { 3NE4101 } \\ & \text { 3NE4101 } \end{aligned}$	3NE8015-1   3NE8003-1	$\begin{aligned} & \text { 3NC2250 } \\ & \text { 3NC2263 } \end{aligned}$	$\begin{aligned} & \text { 3RT2018 } \\ & \text { 3RT2026 } \end{aligned}$	$\begin{aligned} & \text { 3RT2025 } \\ & \text { 3RT2026 } \end{aligned}$
3RW3026	3NA3822-6	--	3NE4102	3NE8017-1	3NC2263	3RT2026	3 RT 2027
3RW3027	3NA3824-6	--	3NE4118	3NE8018-1	3NC2280	3 3T2027	3RT2028
3RW3028	3NA3824-6	--	3NE4118	3NE8020-1	3NC2280	3RT2028	3RT2035
3RW3036	3NA3130-6	--	3NE4120	3NE8020-1	3NC2280	3RT2036	3RT2036
3RW3037	3NA3132-6	--	3NE4121	3NE8021-1	--	3RT2037	3 T2037
3RW3038	3NA3132-6	3NE3221	--	3NE8022-1	--	3RT2038	3RT2038
3RW3046	3NA3136-6	3NE3222	--	3NE8022-1	--	3RT2045	3RT2045
3RW3047	3NA3136-6	3NE3224	--	3NE8024-1	--	3 RT2047	3 RT2047

${ }^{\text {1) }} I_{\mathrm{Q}}=50 \mathrm{kA}$ at 400 V .
2) 3NA3805-1 (NHOO), 5SB261 (DIAZED).

Note:
The specified short-circuit breaking capacities $I_{\mathrm{q}}$ in $k A$ are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.
For CLASS 10 applications, as an alternative to the gG class full-range fuses for cable and line protection 3NA3 (F1), 3RV2 motor starter protectors can also be used, possibly with reduced short-circuit breaking capacity (see page 6/99). In these cases, optional line contactors can be dispensed with.

## Selection and ordering data

## For simple starting conditions

3RW301．   3RW302．												Price per PU			
3RW amb   Rated val three－pha	ent tem es of se moto	erature		3RW ambient temperature $50^{\circ} \mathrm{C}$   Rated values of three－phase motors					Size	SD ${ }^{1)}$	Article No．		$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS＊	PG
Opera－ tional current $I_{\mathrm{e}}$	Rating operat 230 V	nal volt 400 V	$\begin{aligned} & \text { ge } U_{e} \\ & 500 \mathrm{~V} \end{aligned}$	Opera－ tional current $I_{\mathrm{e}}$	Rating at operational voltage $U_{e}$										
A	kW	kW	kW	A	hp	hp	hp	p		d					
Rated o	eratio	volt	e U	．．． 480											
$\begin{aligned} & 3.6 \\ & 6.5 \\ & 9 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 1.5 \\ & 2.2 \end{aligned}$	1.5 3 4	－－	3 6 8	$\begin{aligned} & 0.5 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3 \\ & 5 \end{aligned}$	－－	$\begin{aligned} & \text { S00 } \\ & \text { S00 } \\ & \text { S00 } \end{aligned}$	$\stackrel{\rightharpoonup}{\nabla}$	3RW3013－$\square$ BB $\square 4$ 3RW3014－ロBB $\square 4$ 3RW3016－■BB $\square 4$		1 1 1	1 unit 1 unit 1 unit	$\begin{aligned} & 42 \mathrm{G} \\ & 42 \mathrm{G} \\ & 42 \mathrm{G} \end{aligned}$
$\begin{aligned} & 12.5 \\ & 17.6 \end{aligned}$	3 4	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	－－	$\begin{aligned} & 12 \\ & 17 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	3 3	$\begin{aligned} & 7.5 \\ & 10 \end{aligned}$	－－	$\begin{aligned} & \text { SOO } \\ & \text { SOO } \end{aligned}$	－	3RW3017－■BB $\square 4$   3RW3018－■BB $\square 4$		1 1	1 unit 1 unit	$\begin{aligned} & 42 \mathrm{G} \\ & 42 \mathrm{G} \end{aligned}$
$\begin{aligned} & 25 \\ & 32 \\ & 38 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \\ & 11 \end{aligned}$	$\begin{aligned} & \hline 11 \\ & 15 \\ & 18.5 \end{aligned}$	－－	$\begin{array}{\|l} 23 \\ 29 \\ 34 \\ \hline \end{array}$	$\begin{aligned} & \hline 5 \\ & 7.5 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 7.5 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \end{aligned}$	-- －－ －－	$\begin{aligned} & \text { So } \\ & \text { SO } \\ & \text { So } \end{aligned}$	－	3RW3026－■BB $\square 4$   3RW3027－ロBB $\square 4$   3RW3028－■BB $\square 4$		1 1 1	1 unit 1 unit 1 unit	42 G 42 G 42 G
$\begin{aligned} & \hline 45 \\ & 63 \\ & 72 \end{aligned}$	$\begin{aligned} & \hline 11 \\ & 18.5 \\ & 22 \end{aligned}$	22 30 37	－－	$\begin{aligned} & 42 \\ & 58 \\ & 62 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 40 \end{aligned}$	－－	$\begin{aligned} & \mathrm{S} 2 \\ & \mathrm{~S} 2 \\ & \mathrm{~S} 2 \end{aligned}$	－	3RW3036－ロBB $\square 4$   3RW3037－ロBB $\square 4$   3RW3038－■BB $\square 4$		1 1 1	1 unit 1 unit 1 unit	42 G 42 G 42 G
$\begin{aligned} & \hline 80 \\ & 106 \end{aligned}$	22 30	45 55	－－	73 98	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	25 30	50 75	－－	S3	－	3RW3046－$\square$ BB $\square 4$ 3RW3047－$\square$ BB $\square 4$		1 1	1 unit 1 unit	42G

## Article No．supplement for connection types

－Screw terminals
－Spring－loaded terminals ${ }^{2}$

## Control supply voltage $U_{s}$

－ 24 V AC／DC
－ 110 ．．． 230 V AC／DC
Soft starters for easy starting conditions and high switching frequency， rated operational voltage $U_{e} 200 \ldots 400 \mathrm{~V}$ ，
rated control supply voltage $U_{S} 24 \ldots 230 \mathrm{~V}$ AC／DC

3	0.55	$\mathbf{1 . 1}$	--	A	0.5	$\mathbf{0 . 5}$

－With screw terminals
－With spring－loaded terminals
${ }^{1)}$ Soft starter $U_{e} 200$ to 480 V with screw terminals： Standard delivery time SD＝ 1 day（d）．
2）Main connection from size S2：screw terminals．
Note：
For the constraints for the motor outputs specified here，
see page 6／8．

## Switching devices - Soft starters and solid-state switching devices <br> SIRIUS 3RW soft starters <br> Basic Performance soft starters

3RW30 soft starters > Accessories
Selection and ordering data

## More information

Equipment Manual, see
https://support.industry.siemens.com/cs/ww/en/view/38752095



3RA2932-1CA00

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters Basic Performance soft starters

3RW30 soft starters > Accessories


# Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> <br> Spare parts 

 <br> <br> Spare parts}

## For 3RW55/3RW55 Failsafe

## Overview

## More information

Homepage, see www.siemens.com/sirius-soft-starter
Industry Online Support (SIOS) topic page, see
Industry Mall, see www.siemens.com/product?3RW
https://support.industry.siemens.com/cs/ww/en/view/109747404

## Selection and ordering data

		Product designation	Manufacturer's Article No. of the soft starter	Type of product	SD	Article No.	Price per PU		PS*	PG	
					d						
Power semiconductor modules											
3RW5952-OSF04		Power semiconductor module	3RW5524-.HA. 4 (3x)	$480 \mathrm{~V}, 47 \mathrm{~A}$	-	3RW5952-0SF04		1	1 unit	42 S	
		$\begin{aligned} & \text { 3RW5525-.HA. } 4 \text { (3x), } \\ & \text { 3RW5526-.HA. } 4 \text { (3x) } \end{aligned}$	$480 \mathrm{~V}, 77 \mathrm{~A}$	-	3RW5952-0SH04		1	1 unit	42 S		
		3RW5527-.HA. 4 (3x)	$480 \mathrm{~V}, 93 \mathrm{~A}$	-	3RW5952-0SJ04		1	1 unit	42 S		
		3RW5534-HA. 4 (3x), 3RW5535-HA. 4 (3x)	$480 \mathrm{~V}, 143 \mathrm{~A}$	-	3RW5953-0SL04		1	1 unit	42 S		
		3RW5536-HA. 4 (3x)	$480 \mathrm{~V}, 171 \mathrm{~A}$	$\nabla$	3RW5953-0SM04		1	1 unit	42 S		
		3RW5543-.HA. 4 (3x)	$480 \mathrm{~V}, 210 \mathrm{~A}$	-	3RW5954-0SN04		1	1 unit	42 S		
		3RW5544-.HA. 4 (3x)	$480 \mathrm{~V}, 250 \mathrm{~A}$	$\checkmark$	3RW5954-0SP04		1	1 unit	42 S		
3RW5952-OSF04   3RW5953-0SM06			$\begin{aligned} & \text { 3RW5545-.HA. } 4 \text { (3x), } \\ & \text { 3RW5546-.HA. } 4 \text { (3x) } \end{aligned}$	$480 \mathrm{~V}, 370 \mathrm{~A}$	-	3RW5954-0SR04		1	1 unit	42 S	
		3RW5547-.HA. 4 (3x), 3RW5548-HA. 4 (3x)	$480 \mathrm{~V}, 570 \mathrm{~A}$	-	3RW5954-0ST04		1	1 unit	42S		
		3RW5552-.HA. 4 (3x)	$480 \mathrm{~V}, 630 \mathrm{~A}$	-	3RW5955-0SU04		1	1 unit	42S		
		3RW5553-.HA. 4 (3x)	$480 \mathrm{~V}, 720 \mathrm{~A}$	-	3RW5955-0SV04		1	1 unit	42S		
		3RW5554-.HA. 4 (3x)	$480 \mathrm{~V}, 840 \mathrm{~A}$	-	3RW5955-0SW04		1	1 unit	42 S		
		3RW5556-HA. 4 (3x)	$480 \mathrm{~V}, 1100 \mathrm{~A}$	$\checkmark$	3RW5955-0SX04		1	1 unit	42S		
		3RW5558-.HA. 4 (3x)	$480 \mathrm{~V}, 1280 \mathrm{~A}$	$\checkmark$	3RW5955-0SY04		1	1 unit	42S		
		$\begin{aligned} & \text { 3RW5521-.HA. } 6 \text { (3x), } \\ & \text { 3RW5524-.HA. } 6 \text { (3x) } \end{aligned}$	$690 \mathrm{~V}, 47 \mathrm{~A}$	-	3RW5952-0SF06		1	1 unit	42 S		
3RW5954-0ST06			$\begin{aligned} & \text { 3RW5525-.HA. } 6 \text { (3x), } \\ & \text { 3RW5526-.HA. } 6 \text { (3x) } \end{aligned}$	$690 \mathrm{~V}, 77 \mathrm{~A}$	-	3RW5952-0SH06		1	1 unit	42S	
		3RW5527-.HA. 6 (3x)	$690 \mathrm{~V}, 93 \mathrm{~A}$	-	3RW5952-0SJ06		1	1 unit	42 S		
		$\begin{aligned} & \text { 3RW5534-.HA. } 6 \text { (3x), } \\ & \text { 3RW5535-.HA. } 6 \text { (3x) } \end{aligned}$	$690 \mathrm{~V}, 143 \mathrm{~A}$	-	3RW5953-0SL06		1	1 unit	42 S		
		3RW5536-.HA. 6 (3x)	$690 \mathrm{~V}, 171 \mathrm{~A}$	-	3RW5953-0SM06		1	1 unit	42 S		
		3RW5543-.HA. 6 (3x)	690 V, 210 A	-	3RW5954-0SN06		1	1 unit	42S		
		3RW5544-.HA. 6 (3x)	$690 \mathrm{~V}, 250 \mathrm{~A}$	-	3RW5954-0SP06		1	1 unit	42 S		
		3RW5545-.HA. 6 (3x), 3RW5546-.HA. 6 (3x)	$690 \mathrm{~V}, 370 \mathrm{~A}$	-	3RW5954-0SR06		1	1 unit	42 S		
		3RW5547-HA. 6 (3x), 3RW5548-.HA. 6 (3x)	$690 \mathrm{~V}, 570 \mathrm{~A}$	-	3RW5954-0ST06		1	1 unit	42S		
		3RW5552-.HA. 6 (3x)	$690 \mathrm{~V}, 630 \mathrm{~A}$	-	3RW5955-0SU06		1	1 unit	42S		
		3RW5553-.HA. 6 (3x)	690 V, 720 A	-	3RW5955-0SV06		1	1 unit	42S		
		3RW5554-.HA. 6 (3x)	$690 \mathrm{~V}, 840 \mathrm{~A}$	-	3RW5955-0SW06		1	1 unit	42 S		
		3RW5556-.HA. 6 (3x)	$690 \mathrm{~V}, 1100 \mathrm{~A}$	$\checkmark$	3RW5955-0SX06		1	1 unit	42S		
		3RW5558-.HA. 6 (3x)	$690 \mathrm{~V}, 1280 \mathrm{~A}$	-	3RW5955-0SY06		1	1 unit	42 S		
Bypass units											
	$\begin{aligned} & 1 \\ & 3 \\ & 3 \end{aligned}$		Bypass unit	$\begin{aligned} & \text { 3RW552.-.HA... } \\ & \text { 3RW553.-.HA.. } \end{aligned}$	--	-	3RW5953-0BY00		1	1 unit	42 S
				3RW5543.-. HA. 3RW5544.-.HA. 3RW5545.-.HA.	210... 315 A	-	3RW5954-0BP00		1	1 unit	42 S
				$\begin{aligned} & \text { 3RW5546.-.HA..., } \\ & \text { 3RW5547.-.HA.., } \\ & \text { 3RW5548.-.HA.. } \end{aligned}$	$370 . .570 \mathrm{~A}$	-	3RW5954-0BT00		1	1 unit	42 S
				3RW5552, 3RW5553, 3RW5554	$630 . . .840 \mathrm{~A}$	-	3RW5955-0BW00		1	1 unit	42 S
				3RW5556, 3RW5558	$1100 \mathrm{~A}, 1280 \mathrm{~A}$	-	3RW5955-0BY00		1	1 unit	42 S

Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters Spare parts

For 3RW55/3RW55 Failsafe


## Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters <br> Spare parts

For 3RW55/3RW55 Failsafe


Switching devices - Soft starters and solid-state switching devices SIRIUS 3RW soft starters Spare parts

For 3RW55/3RW55 Failsafe



[^0]:    For more information, see www.siemens.com/siplus-extreme.

[^1]:    1) $P C$ labeling system for individual inscription of unit labeling plates available from: murrplastik Systemtechnik GmbH (see page 16/16).
[^2]:    Configuration of AS-Interface multiple networks with one PSN130S 30 V power supply unit (examples with schematic representation):
    Left: Double network based on the S22.5 double data decoupling module and a SIMATIC ET 200SP with two CM AS-i Master ST modules

[^3]:    Former technology with sensor boxes

[^4]:    ${ }^{1)}$ Connection method:
    Main circuit: Busbar connection (optionally with box terminals), Auxiliary/control circuit: Screw terminals or spring-loaded terminals.

[^5]:    Application with safety-related disconnection with contactors with fail-safe control using the example of a 3RT105 contactor

[^6]:    ) 3RH22, 3RH29, 3RT2 DC-13.
    2) With laterally mountable auxiliary switches, only the currents for rated operational voltages up to 500 V apply

[^7]:    1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
[^8]:    1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
[^9]:    1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
[^10]:    1) Dependence of the switching frequency $z$ ' on the operational current $I^{\prime}$ and operational voltage $U^{\prime}$ : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I\right) \cdot\left(U_{\mathrm{e}} / U\right)^{1.5} \cdot 1 / \mathrm{h}$.
[^11]:    When using contactors with IE3/IE4 motors, use contactors fitted with varistors instead of diodes. In the case of 5.5 kW coupling contactors of size S00, use 5.5 kW coupling contactors of size S0, see page 3/66. For more information about dimensioning and configuring, see page 3/7.

[^12]:    Signal transmission through AS-Interface

[^13]:    ${ }^{\text {1) }}$ Combinations according to EN 50012 , EN 50011 and IEC 60947-5-1 are in bold print. All combinations comply with EN 50005.

[^14]:    1) Contacts with make-before-break have no mirror contact function.
[^15]:    1) Combinations according to EN 50011 and IEC 60947-5-1 are in bold print. All combinations comply with EN 50005 .
    ${ }^{2)}$ For selection and ordering data, see page $3 / 97$.
[^16]:    1) Combinations according to EN 50012 , EN 50011 and IEC 60947-5-1 are in bold print. All combinations comply with EN 50005.
[^17]:    ) Combinations according to EN 50012, EN 50011 and IEC 60947-5-1 are in bold print. All combinations comply with EN 50005
    ${ }^{2)}$ Without positively driven operation.

[^18]:    ${ }^{1)}$ For detailed information on use, see page $3 / 90$.

[^19]:    1) For detailed information on use, see pages $3 / 90$ and $3 / 91$.
[^20]:    ${ }^{1)}$ For detailed information on use, see page $3 / 92$.

[^21]:    1) For detailed information on use, see pages $3 / 93$ and $3 / 94$.
[^22]:    1) For detailed information on use, see pages $3 / 92$ and $3 / 94$.
[^23]:    3RA2942-2G

    1) The 3RA1954-2G adapter cannot be used in conjunction with 3RT204..-.KB coupling contactors, size S3.
[^24]:    1) At 24 V DC; for further voltages, deviations of up to $\pm 10 \%$ are possible
[^25]:    1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
    2) Max. permissible rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4=I_{\mathrm{e}} / \mathrm{AC}-3$ up to 500 V ,
[^26]:    3) Dependence of the switching frequency $z$ ' on the operational current $I^{\prime}$ and operational voltage $U^{\prime}$ : $z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I\right) \cdot\left(U_{\mathrm{e}} / U\right)^{1.5} \cdot 1 / \mathrm{h}$.
[^27]:    1) Rated control supply voltages for solenoid coils:

    The 10th and 11th digits of the article number must be supplemented
    accordingly, see the tables on pages $3 / 137$ and $3 / 138$.

[^28]:    ${ }^{1)}$ If the three main current paths carry a load of 20 A , the following applies if

[^29]:    1) The links for paralleling can be reduced by one pole. The rated operational currents apply to each pole.
[^30]:    1) For effective assistance from Technical Support, you must provide the following details:

    - Rated motor voltage,
    - Rated motor current,
    - Service factor, operating values
    - Motor starting current factor
    - Starting time
    - Ambient temperature

[^31]:    The parts (9) and (10) can only be mounted for contactors with screw terminals, the wiring modules (6) must be removed beforehand.

[^32]:    1) Contactor assembly for star-delta (wye-delta) starting for customer assembly in size S3-S3-S3 (not shown): The 3RA2943-2BB. assembly kit is to be used here, see page $3 / 112$.
[^33]:    Complete contactor assemblies for star-delta (wye-delta) starting, see page 3/174.

[^34]:    1) The 3RA1954-2G adapter cannot be used in conjunction with
[^35]:    Application with safety-related disconnection with contactors with fail-safe control

[^36]:    1) The values in brackets apply for $3 R T 23.6-1 \ldots 0-4 A A O$ versions.
[^37]:    1) Required conductor cross-section $10 \mathrm{~mm}^{2}$.
[^38]:    1) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: 2 x to 6 x ).
[^39]:    1) Values for NO contact/NC contact. The NC contact can switch no more than 4 kW .
[^40]:    2) Only applies for main current paths, otherwise $U_{i}=690 \mathrm{~V} ; \mathrm{U}_{\mathrm{imp}}=6 \mathrm{kV}$.
[^41]:    ${ }^{1)}$ In case of $A C / D C$ operation (UC operating mechanisms): max. 300/h.
    3) Operating cycles/h: 100 with AC operation; 80 with AC/DC operation.
    2) Specifications for worst case scenario, higher switching frequency
    4) Operating cycles/h: 80 with $A C$ operation; 60 with $A C / D C$ operation.

[^42]:    1) It is not possible to mount an auxiliary switch.
    2) 4-pole auxiliary switch according to EN 50005 can be mounted.
[^43]:    1) Contacts not extendable
[^44]:    1) For 3TC78, one auxiliary NC contact each of the right and left conducting paths must be connected in series

    Rated data of the auxiliary contacts, see page 4/69.

[^45]:    ${ }^{1)}$ For rated control supply voltages, see page $4 / 76$. The 10th and 11th digits

[^46]:    ${ }^{\text {1) }}$ Operating range at $220 \mathrm{~V}: 0.85$ to $1.1 \times \mathrm{U}_{\mathrm{s}}$; lower operating range limit according to IEC 60947

[^47]:    ${ }^{2)}$ Operating range at $60 \mathrm{~Hz}: 0.85$ to $1.1 \times \mathrm{U}_{\mathrm{s}}$.

[^48]:    Application example motor controller

[^49]:    Application example motor controller

[^50]:    Simulation Tool for Soft Starters (STS), see page 6/9 or
    https://support.industry.siemens.com/cs/ww/en/view/101494917
    SIRIUS Soft Starter ES (TIA Portal), see page 6/9 or

[^51]:    SIRIUS 3RW soft starters

[^52]:    $\checkmark$ Function available
    -- Function not available
    5) When using the motor overload protection according to ATEX/IECEX, an upstream contactor may be required, see page 6/12.

    1) Inside-delta circuit only up to operational voltage 600 V
    2) Note derating above $40^{\circ} \mathrm{C}$
    3) Special device versions only
    ${ }^{7)}$ With software Soft Starter ES (TIA Portal).
    4) Only soft starting available for 3RW30.
    ${ }^{4)}$ Calculate soft starter and motor with size allowance where required.
    5) Not possible in inside-delta circuit.
    ${ }^{9)}$ Only in conjunction with special accessories
[^53]:    ${ }^{1)}$ Relative to set $\boldsymbol{I}_{\mathrm{e}}$.

[^54]:    ${ }^{1)}$ Relative to set $\boldsymbol{I}_{\mathrm{e}}$.

[^55]:    ）3RW55 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

[^56]:    3RW5980-0CR00

[^57]:    3RW52 soft starter with screw terminals for operational voltage up to 600 V ： Standard delivery time SD＝ 2 days（d）

[^58]:    1）3RW52 soft starter with screw terminals for operational voltage up to 600 V Standard delivery time SD＝ 2 days（d）

[^59]:    SIRIUS 3RW50 Basic Performance soft starter with accessories (see page 6/81), for expansion with HMI module or communication module

[^60]:    ${ }^{1)}$ Relative to the smallest adjustable $\boldsymbol{I}_{\mathrm{e}}$

[^61]:    1) PC labeling systems for individual inscription of unit labeling plates are available from: murrplastik Systemtechnik GmbH
    (see page 16/16)
[^62]:    ${ }^{1)}$ In the case of deviations, please observe derating, see Equipment Manual

